HELICO (Helicobacter Pylori Destroyer)
November 8, 2019SENOLYTIC (Zombie Cell Killer)
April 2, 2020ANTI-ADIPOGENIC (Adipocyte Differentiation Inhibitor)
$275.00
introducing
interstellar blend
ANTI
ADIPOGENIC
200:1 CONCENTRATION
Adipogenesis refers to the process of formation of adipose tissue. It is a multistep process starting with clonal expansion of mesenchymal cells and the Differentiation of these mesenchymal cells into Pre-Adipocytes and finally into mature Adipocytes.
Herbal Remedies against Adipogenesis
Many phytochemicals and herbal extracts show Inhibitory effects on Adipogenesis in cell models and mouse models. However, lack of clinical evidence and epidemiological data to support their roles in Inhibiting Adipogenesis hindered their development to become an Anti-Obesity therapeutic agent. Furthermore, many of these phytochemicals have low bioavailability. Chemical structural modification or targeted delivery system may help to increase their Anti-Adipogenesis or Anti-Obesity efficacies. Nevertheless, many of these phytochemicals are abundantly found in our daily food, or they are the herbs for cooking or seasoning. For example, resveratrol is rich in red wine and grapes; genistein is rich in soy; quercetin in apples and onions, and curcumin is a well-known component of the cook seasoning. Therefore, a healthy diet can definitely help us to increase the uptake of these phytochemicals in our daily life. Moreover, combination of phytochemicals or herbal extracts may act synergistically to Inhibit Adipogenesis.
Indeed, Obesity is not simply an excess accumulation of white Adipose Tissue but is usually associated with insulin resistance and an increased production of metabolic hormones coupled with chronic low-grade state of Inflammation . To effectively Reduce Obesity , a holistic strategy with the consumption of phytochemicals or herbal extracts can be designed not only to Reduce Adipose Tissue Mass, but also increase thermogenic energy expenditure, improve insulin sensitivity, Reduce plasma lipids which can help to Reduce the Obesity -associated dyslipidemia and other comorbid conditions.
Obesity is a global health problem characterized as an increase in the Mass of Adipose Tissue . Adipogenesis is one of the key pathways that increases the Mass of Adipose Tissue , by which preAdipocyte s mature into Adipocytes through cell Differentiation . Peroxisome proliferator-activated receptor γ (PPARγ ), the chief regulator of Adipogenesis , has been acutely investigated as a molecular target for natural products in the development of anti-Obesity treatments. In this review, the regulation of PPARγ expression by natural products through Inhibition of CCAAT/enhancer-binding protein β (C/EBPβ) and the farnesoid X receptor (FXR), increased expression of GATA-2 and GATA-3 and activation of the Wnt/β-catenin pathway were analyzed.
Furthermore, the regulation of PPARγ transcriptional activity associated with natural products through the antagonism of PPARγ and activation of Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK) were discussed. Lastly, regulation of mitogen-activated protein kinase (MAPK) by natural products, which might regulate both PPARγ expression and PPARγ transcriptional activity, was summarized. Understanding the role natural products play, as well as the mechanisms behind their regulation of PPARγ activity is critical for future research into their therapeutic potential for fighting Obesity.
Effects of Flavonoids and Phenolic Acids on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes
Obesity has become a global epidemic in both developed and developing countries, and it is a significant risk factor for various diseases such as Diabetes , cancer, heart disease, and hypertension. In the present study, the effect of naturally occurring Antioxidants (Flavonoids and Phenolic Acids ) on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes was investigated. The results showed that o-coumaric acid and rutin had the highest Inhibition on intracellular triglyceride (61.3 and 83.0%, respectively) among 15 Phenolic Acids and 6 Flavonoids tested. However, the oil red o stained material (OROSM) showed that cell number in 3T3-L1 Adipocytes was not influenced by those compounds.
For glycerol-3-phosphate dehydrogenase (GPDH) activity, the data indicated that o-coumaric acid and rutin had the highest Inhibition on GPDH activity (54.2 and 66.8%, respectively) among the compounds tested. o-Coumaric acid and rutin also Inhibited the expression of PPARγ , C/EBPα and leptin and then up-regulated expression of adiponectin at the protein level. Some naturally occurring Antioxidants efficiently suppressed Adipogenesis in 3T3-L1 Adipocytes. These results suggest that o-coumaric acid and rutin targeted for Adipocyte functions could be effective in improving the symptoms of Metabolic Syndrome.
INGREDIENTS & science
açai (Euterpe oleracea Martius)
The anti-lipidaemic and anti-inflammatory effects of açai Polyphenols in 3T3-L1 mouse Adipocytes were investigated. Pre-Adipocytes were differentiated with and without açai-Polyphenols at concentrations of 2.5, 5 and 10 µg gallic acid equivalents (GAE)/mL. Results showed that açai Polyphenols Reduce the accumulation of intracellular lipids in differentiated Adipocytes in a dose-dependent manner and downregulated PPARγ 2. The gene-expression of Adipogenic transcription factors C/EBPα, C/ebpβ, Klf5 and Srebp1c was decreased.
This was accompanied by a reduction of Adipogenic genes, including aP2, LPL, FATP1 and FAS, leptin and total PAI and an increase of adiponectin. Additionally, açai Polyphenols protected cells against the production of ROS and decreased the expression of mRNA and protein levels of pro-inflammatory cytokines when 3T3-L1 cells were challenged with TNF-α. Thus, these results indicate that açai Polyphenols may be useful in the prevention of Adipogenesis, oxidative stress and Inflammation.
In this study, we observed that LEAO decreased the accumulation of lipid droplets during Adipogenesis and down-regulated the expression of key Adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPAR γ) and CCAAT/enhancer binding protein α (C/EBP α). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote Adipogenesis by inducing the expression of PPAR γ. LEAO also activated β-catenin signaling, which prevents the Adipogenic program by suppressing the expression of PPAR γ. Therefore, we found that treatment with LEAO is effective for attenuating Adipogenesis in 3T3-L1 cells . Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing Obesity.
The present study investigated the AntiObesity effect of Achyranthes bidentata Blume root water extract in a 3T3-L1 Adipocyte Differentiation model and rats fed with a high-fat diet. To investigate the effect of Achyranthes bidentata Blume on Adipogenesis in vitro, differentiating 3T3-L1 cells in Adipocyte -induction media were treated every two days with Achyranthes bidentata Blume at various concentrations (1 to 25 μg/mL) for eight days. We found that Achyranthes bidentata Blume root Inhibited 3T3-L1 Adipocyte Differentiation without affecting cell viability and Western blot analysis revealed that phospho-Akt expression was markedly decreased, whereas there was no significant change in perilipin expression.
Acorn (Quercus acutissima CARR.) is a nut from the Fagaceae family that has been used in traditional medicine for many years. However, shells from acorns are regarded as a by-product and are mostly discarded. Anti-Adipogenic activities of acorn shells were investigated using 3T3-L1 cells and methanol shell extracts (AE-M). AE-M demonstrated Cu2+-chelation activities and anti-oxidant activities via reduction of oxidative stress levels induced using AAPH. Six days after Adipocyte Differentiation, 50 and 100 μg/mL AE-M completely suppressed 3T3-L1 Adipogenesis and the Anti-Adipogenic effect was stronger than for the positive control 50 μM quercetin.
Treatment with AE-M in 3T3-L1 cells Reduced mRNA expression levels of Adipogenic genes. AE-M-Inhibition was found in Pre-Adipogenic, early, and intermediate stages of Adipogenesis in 3T3-L1 cells. The Wnt/β-catenin signaling pathway is required for AE-M-Inhibition of 3T3-L1 Adipogenesis.
Adenanthin (isodon adenantha)
The Effects of AICAR on Adipocyte Differentiation of 3T3-L1 cells
The AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), has been found to Inhibit the Differentiation of 3T3-L1 Adipocytes, if added at an early phase of Differentiation. AICAR blocks the expression of the late Adipogenic markers, fatty acid synthase and acetyl-CoA carboxylase, and of the transcription factors, C/EBPα and PPARγ. It also Inhibits early clonal expansion of Pre-Adipocytes, prevents the fall in C/EBPβ expression during the intermediate stage of Differentiation and Inhibits the late phase expression of CHOP-10, an antagonist of C/EBPβ. These data suggest a possible Inhibitory role for AMPK in the process of adipose Differentiation and suggest that AMPK might be a target to block Adipogenesis.
Results: AICAR blocked Adipogenic conversion in 3T3L1 cells along with significant decrease in the neutral lipid content by downregulating several Adipocyte -specific transcription factors including peroxisome proliferators-activated receptor γ (PPARγ), C/EBPα and ADD1/SREBP1, which are critical for Adipogenesis in vitro. Moreover, intraperitoneal administration of AICAR (0.5 mg g/body weight) to mice fed with high-fat diet (60% kcal% fat) to induce DIO, significantly blocked the body Weight Gain and total content of epididymal fat in these mice over a period of 6 weeks. AICAR treatment also restored normal adipokine levels and resulted in significant improvement in glucose tolerance and insulin sensitivity. The reduction in Adipose Tissue content in AICAR treated DIO mice was due to reduction in lipid accumulation in the pre-existing Adipocytes. However, no change was observed in the expression of PPARγ, C/EBPα and ADD1/SREBP1 transcription factors in vivo though PGC1α expression was significantly induced.
Conclusion: Our study demonstrates that AICAR treatment significantly attenuates adipoctye Differentiation in vitro. However, its administration restricted the body weight, epididymal fat content and normalized metabolic alteration mediated by diet induced Obesity in mice. Increase in phosphorylation of ACC and AMPKα during Adipocyte Differentiation and AMPK activity in epididymal Adipose Tissue in DIO mice raises doubts about the involvement of AMPK in this process.
Ajoene Sulfur (Allium sativum)
Allium hookeri root
Anti-Adipogenic and AntiDiabetic activities of Allium hookeri root water extracts (ARW) were assessed. Oil Red O staining showed that treatment with ARW caused a dose-dependent reduction in lipid accumulation. ARW was also involved in Adipocyte Lipolysis via LPL activity, and in the concentration of glycerol in a culture medium. On the basis of the concentration of adipokines following ARW treatment, ARW appeared to Inhibit expression of PPAR-γ, to Reduce concentrations of leptin and resistin, to increase the concentration of adiponectin, and to Inhibit lipid accumulation. ARW modulated adipokine expression associated with insulin resistance and sensitivity. 3T3-L1 Adipocytes treated with ARW showed increased GLUT-4 expression with increased glucose uptake into Adipocytes. ARW showed effectiveness for improvement of Diabetic conditions.
Andrographolide (Andrographis paniculata)
Andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent Anti-Obesity action by Inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression.
Anthocyanins
Regulation of Adipocyte Function by Anthocyanins ; Possibility of Preventing the Metabolic Syndrome
Obesity is defined as the accumulation of excess Adipose Tissue resulting from various metabolic disorders. Adipocyte dysfunction is strongly associated with the development of Obesity and insulin resistance. Metabolic Syndrome is characterized by a group of metabolic risk factors in one person. Abdominal Obesity and Adipocyte dysfunction play an important role in the development of this syndrome.
Anthocyanins are used as a food coloring, and they are widely distributed in human diets including berries, suggesting that large amounts of Anthocyanins are ingested from plant-based foods. This study shows that Anthocyanins have a significant potency of AntiObesity and ameliorate Adipocyte function in in vitro and in vivo systems and also that they have important implications for preventing Metabolic Syndrome.
Anthocyanins markedly Reduced gene and protein expression levels of lipogenic transcription factors such as liver X receptor α, sterol regulatory element-binding protein-1c, peroxisome proliferators-activated receptor-γ, and CCAAT enhancer-binding protein-α. In addition, the target gene and protein expression of these lipogenic transcription factors such as fatty acid synthase, stearoyl-CoA desaturase-1, and acetyl-CoA carboxylase α were markedly suppressed by Anthocyanins. Thus, Anthocyanins suppress lipid accumulation in Adipocytes due to broad Inhibition of the transcription factors regulating lipogenesis. This may partially explain the mechanism by which Anthocyanins exert their Anti-Obesity effect.
Antofine Alkaloid
Antrodia cinnamomea
Apigetrin (apigenin-7-O-glucoside)
Results: Our results showed that apigterin treatment Inhibited significantly lipid accumulation without effect on cell viability at 100 μM, and it exerted the Anti-Adipogenic effect during the early stages of Differentiation. Flow cytometry analysis showed that apigenin-7-O-glucoside (Ap7G) Inhibited cell proliferation during mitotic clonal expansion and caused cell cycle delay. Quantitative PCR analysis revealed that the mRNA levels of C/EBP-α, PPAR-γ, SREBP-1c and FAS were suppressed after apigetrin treatment at 100 μM. Moreover, the mRNA level of pro-inflammatory genes (TNF-α and IL-6) were suppressed after apigterin treatment, at high concentration Preadipocyte cells.
Conclusion: Taken together, these results indicated that apigenin-7-O-glucoside Inhibits Adipogenesis of 3T3-L1 preadipocytes at early stage of Adipogenesis.
Arctigenin
Results: Arctiin treatment to 3T3-L1 Pre-Adipocytes markedly decreased Adipogenesis in a dose-dependent manner. The arctiin treatment significantly decreased the protein levels of the key Adipogenic regulators PPARγ and C/EBPα, and also significantly Inhibited the expression of SREBP-1c, fatty acid synthase, fatty acid-binding protein and lipoprotein lipase. Also, arctiin greatly increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target phosphorylated-acetyl CoA carboxylase. Furthermore, administration of arctiin significantly decreased the body weight in obese mice fed with the high-fat diet. The epididymal, perirenal or total visceral Adipose Tissue weights of mice were all significantly lower in the HF + AC than in the HF. Arctiin administration also decreased the sizes of lipid droplets in the epididymal Adipose Tissue.
Conclusions: Arctiin Inhibited Adipogenesis in 3T3-L1 Adipocytes through the Inhibition of PPARγ and C/EBPα and the activation of AMPK signaling pathways. These findings suggest that arctiin has a potential benefit in preventing Obesity.
Aristolochia Manshuriensis
Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK Inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1/2 pathway in 3T3-L1 Adipocytes and HFD-induced Obesity mice, and AA may be main act in Inhibitory effects of AMK during Adipocyte Differentiation.
Herbal Remedies against Adipogenesis
Aristolochia manshuriensis Kom is a traditional medicinal herb used for treatment of arthritis, rheumatism, hepatitis. Its extract Inhibited Adipocyte Differentiation by regulating ERK1/2 and Akt pathway. Besides, expressions of FAS, LPL and aP2 were significantly Reduced by the extract treatment during Adipogenesis.
Aristotelia chilensis
Interest in berries from South America has increased due to their potential health benefits. The objective of this study was to characterize the Anthocyanins and proanthocyanidins of Vaccinium floribundum and Aristotelia chilensis, total phenolics, and antioxidant capacity and to evaluate, in vitro, the ability of their phenolic extracts to Reduce Adipogenesis and lipid accumulation in 3T3-L1 Adipocytes. The anti-inflammatory property of these extracts on RAW 264.7 macrophages was also investigated. Antioxidant capacity, measured as oxygen radical scavenging capacity and expressed as Trolox equivalents, was higher in the berries of A. chilensis. Phenolic extracts Inhibited lipid accumulation by 4.0−10.8% when Adipocytes were treated at maturity and by 5.9−37.9% when treated throughout Differentiation.
Furthermore, a proanthocyanidin-enriched fraction from V. floribundum significantly increased Pref-1 expression in preadipocytes. Phenolic extracts decreased the production of nitric oxide (3.7−25.5%) and prostaglandin E2 (9.1−89.1%) and the expression of inducible nitric oxide synthase (9.8−61.8%) and cycloxygenase-2 (16.6−62.0%) in lipopolysaccharide-stimulated RAW 264.7 macrophages. V. floribundum and A. chilensisphytochemicals limit Adipogenesis and inflammatory pathways in vitro, warranting further in vivo studies.
Obesity has increased continuously in western countries during the last several decades and recently become a problem in developing countries. Currently, Anti-Obesity drugs originating from natural products are being investigated for their potential to overcome adverse effects associated with chemical drugs. Artemisinic acid, which was isolated from the well-known anti-malaria herb Artemisia annua (AA) L., was recently shown to possess Anti-Adipogenic effects in vitro. However, the Anti-Adipogenic effects of AA in animal models have not yet been investigated.
Therefore, we conducted daily oral administration with AA water extract in a diet-induced Obesity animal model and treated 3T3-L1 cells with AA to confirm the Anti-Adipogenic effects in the related protein expressions. We then evaluated the physiology, Adipose Tissue histology and mRNA expressions of many related genes. Inhibition of Adipogenesis by the AA water extract was observed in vitro. In the animal model, Weight Gain was significantly lower in the AA treated group, but there were no changes in food intake volume or calories. Reductions in lipid droplet size and mRNA expression associated with Adipogenesis were also observed in animal epididymal fat. This study is the first to report that AA has an anti-obese effects in vivo.
Aster yomena
The leaves of Aster yomena (Kitam.) Honda have long been used as a traditional herb for treating disorders including coughs, asthma, and insect bites. According to recent studies, A. yomena leaf extracts have several pharmacological properties, including anti-inflammatory, antioxidant, and anti-asthmatic activities. However, little information is available regarding their Anti-Obesity effect. In this study, we investigated the Inhibitory effect of the ethanol extracts of A. yomena leaves (EEAY) on Adipocyte Differentiation and Adipogenesis using 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were treated with various concentrations of EEAY (ranging from non-toxic), the number of lipid droplets, lipid content, and triglyceride production, the typical characteristics of Adipocytes, were suppressed in a concentration-dependent manner.
During this process, EEAY significantly Reduced the expression of Adipogenic transcription factors, including peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein α and β, and sterol regulatory element-binding protein-1c. In addition, EEAY was also found to potently Inhibit the expression of Adipocyte-specific genes, including Adipocyte fatty acid-binding protein and leptin. In particular, EEAY treatment effectively enhanced the activation of the AMP-activated protein kinase (AMPK) signaling pathway; however, the co-treatment with compound C, an Inhibit or of AMPK, significantly restored the EEAY-induced Inhibition of Pro-Adipogenic transcription factors and Adipocyte-specific genes. These results indicate that EEAY may exert an Anti-Obesity effect by controlling the AMPK signaling pathway, suggesting that the leaf extract of A. yomena may be a potential Anti-Obesity agent.
Astilbe chinensis
Astilbe chinensis Franch. et Savat. (AC) has been used in traditional medicine for the treatment of chronic bronchitis, arthralgia, and gastralgia. In this study, we investigated the AntiObesity effect of AC extract on 3T3-L1 preadipocytes and high-fat-diet-fed C57BL/6N obese mice. We found that AC extracts dramatically decreased the lipid content of 3T3-L1 cells in a concentration-dependent manner without cytotoxicity. The action mechanism of AC extract was demonstrated to be the Inhibition of lipid accumulation and dose-dependent decrease in the expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPAR-γ), and sterol regulatory element-binding protein 1 (SREBP1).
Furthermore, AC extract increased the mitochondrial phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), mitochondrial biogenesis, and Lipolysis -related factors. In amice model of high-fat-diet-induced Obesity, the mice administered AC extract experienced significant decrease of 64% in Weight Gain, 55% in insulin resistance index, 22% in plasma triglycerides (TG), 56% in total cholesterol (TC), and 21% in nonesterified fatty acid (NEFA) levels compared with those in the high-fat diet-fed control mice. Collectively, these results indicated that AC extract exerted antiobesogenic activity through the modulation of the AMPK signaling pathway, Inhibition of Adipogenesis, decreased lipid content, and Reduced Adipocyte size.
Astragalin (3-O-glucoside kaempferol)
Astilbe chinensis Franch. et Savat. (AC) has been used in traditional medicine for the treatment of chronic bronchitis, arthralgia, and gastralgia. In this study, we investigated the AntiObesity effect of AC extract on 3T3-L1 preadipocytes and high-fat-diet-fed C57BL/6N obese mice. We found that AC extracts dramatically decreased the lipid content of 3T3-L1 cells in a concentration-dependent manner without cytotoxicity. The action mechanism of AC extract was demonstrated to be the Inhibition of lipid accumulation and dose-dependent decrease in the expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPAR-γ), and sterol regulatory element-binding protein 1 (SREBP1).
Furthermore, AC extract increased the mitochondrial phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), mitochondrial biogenesis, and Lipolysis-related factors. In amice model of high-fat-diet-induced Obesity, the mice administered AC extract experienced significant decrease of 64% in Weight Gain, 55% in insulin resistance index, 22% in plasma triglycerides (TG), 56% in total cholesterol (TC), and 21% in nonesterified fatty acid (NEFA) levels compared with those in the high-fat diet-fed control mice.
Collectively, these results indicated that AC extract exerted antiobesogenic activity through the modulation of the AMPK signaling pathway, Inhibition of Adipogenesis, decreased lipid content, and Reduced Adipocyte size.
Averrhoa carambola
Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may Inhibit Adipogenesis and Obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress Adipocyte Differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat Obesity and its related diseases. (−)-Epicatechin was identified as a bioactive compound likely responsible for this suppression.
As the genetic expression studies revealed that the Adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (−)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of Adipocyte Differentiation.
Avicularin (Guava leaves)
Avicularin (quercetin-3-O-α-l-arabinofuranoside) is a plant flavonoid and a quercetin glycoside. In this study, we found that avicularin suppressed the accumulation of intracellular lipids through repression of glucose transporter 4 (GLUT4)-mediated glucose uptake in mouse adipocytic 3T3-L1 cells. Avicularin was highly purified (purity of more than at least 99%) from Taxillus kaempferi (DC.) Danser (Loranthaceae) by high-performance liquid chromatography, and its structure was determined by nuclear magnetic resonance and Mass spectrometry. Avicularin decreased the intracellular triglyceride level along with a reduction in the expression of Adipogenic genes such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and aP2 (fatty acid-binding protein 4).
In contrast, avicularin did not affect the expression of lipogenic and lipolytic genes. Interestingly, the expression of the GLUT4 gene was significantly suppressed in an avicularin-concentration-dependent manner. Moreover, the binding of C/EBPα to the promoter region of the GLUT4 gene was repressed by adding avicularin to the medium in 3T3-L1 cells, as demonstrated by the results of a chromatin immunoprecipitation assay. These results indicate that avicularin Inhibited the accumulation of the intracellular lipids by decreasing C/EBPα-activated GLUT4-mediated glucose uptake in Adipocytes.
Bacaba (Oenocarpus bacaba)
Bacaba phenolic extract attenuates Adipogenesis by down-regulating PPARγ and C/EBPα in 3T3-L1 cells
Bacaba (Oenocarpus bacaba Mart.) is a native Brazilian palm fruit with a high amount of Polyphenol ics, reported to have an apoptotic effect on cancer cells [1]. Here, we examined the effect of Bacaba phenolic extract (BPE) on Adipogenesis using 3T3-L1 preadipocytes . Proliferating and differentiating Adipocytes were incubated with BPE at 6, 12, and 24 μg of gallic acid equivalents (GAE)/ml. BPE Reduced accumulation of intracellular lipids and protein expression of Adipogenic markers including PPARγ, C/EBPα, FABP4, IR-β, and adiponectin in a dose-dependent manner during Differentiation of 3T3-L1 cells into Adipocytes.
Furthermore, lipid accumulation decreased with BPE (24 μg of GAE/ml) during the early stage of mitotic clonal expansion (Days 0–2). In contrast, the Inhibition of protein expression of Adipogenic markers needed a longer duration (Days 0–4, 0–7, 2–7) of BPE incubation. These results suggest that BPE Inhibits adipogenisis in vitro via targeting transcriptional factors during the early and middle stages of Differentiation.
Baicalin (Scutellaria baicalensis)
In this study, the AntiObesity effects of baicalin, 5,6‐dihydroxyflavone‐7‐glucuronic acid, were characterized using an in vitro system of Adipogenesis, i.e. fat cell formation. Baicalin‐treatment of 3T3‐L1 preadipocytes was shown to Inhibit triglyceride accumulation and lipid droplet formation during induced Adipogenesis. Microarray analyses showed that baicalin modulated the expression of genes located in pathways such as Adipogenesis, cholesterol biosynthesis, focal adhesion and others. In the Adipogenesis pathway, treatment with baicalin significantly down‐regulated terminal Differentiation markers of Adipocytes including fatty acid binding protein 4. The effects of baicalin on the core part of the Adipogenesis pathway, however, were paradoxical; the expression levels of CCAAT/enhancer binding protein (C/EBP)β and C/EBPδ were up‐regulated, while the expression levels of the peroxisome proliferator‐activated receptor (PPAR)γ and C/EBPα were down-regulated.
The antiAdipogenic mechanisms of baicalin can be explained by its effects on the upstream part of Adipogenesis pathway; baicalin not only up‐regulates the anti Adipogenic regulators, C/EBPγ, C/EBP homologous protein and Kruppel‐like factor (KLF)2, but also down‐regulates the pro Adipogenic regulator, KLF15. The overall effects of baicalin on these upstream regulators of Adipogenesis were antiAdipogenic, resulting in the down‐regulation of downstream genes and the Inhibition of cellular Fat Accumulation.
Bamboo (Phyllostachys bambusoides)
In this study, the Inhibitory effects of bamboo leaf extracts on Adipogenesis were investigated by evaluating their activity against Adipogenic transcription factors and enzymes in 3T3-L1 Adipocytes. Bamboo leaf extracts significantly decreased triglyceride levels, and increased glycerol release in Adipocytes. Cells treated with the water extract showed significantly higher glycerol release as well as lower triglyceride contents than those treated with the ethanol extract. Both bamboo leaf extracts significantly Inhibited the expression of Adipogenic transcription factors and enzymes, such as CCAAT/enhancer-binding protein α, sterol regulatory element binding protein 1c, peroxisome proliferator-activated receptor γ, acetyl-coenzyme A carboxylase, and fatty acid synthase, and increased the expression of phospho-adenosine monophosphate-activated protein kinase.
These results show that bamboo leaf extracts Inhibited Adipogenesis in 3T3-L1 Adipocytes and that the water extract was more efficacious than the ethanol extract.
Banaba (Lagerstroemia speciosa)
The effects of extracts isolated from Lagerstroemia speciosa L. (banaba) on glucose transport and adipocyte differentiation in 3T3-L1 cells were studied. Glucose uptake–inducing activity of banaba extract (BE) was investigated in differentiated adipocytes using a radioactive assay, and the ability of BE to induce differentiation in preadipocytes was examined by Northern and Western blot analyses. The hot water BE and the banaba methanol eluent (BME) stimulated glucose uptake in 3T3-L1 adipocytes with an induction time and a dose-dependent response similar to those of insulin. Furthermore, there were no additive or synergistic effects found between BE and insulin on glucose uptake, and the glucose uptake activity of insulin could be reduced to basal levels by adding increasing amounts of BE.
Unlike insulin, BE did not induce adipocyte differentiation in the presence of 3-isobutyl-1-methylxanthine (IBMX) and dexamethasone (DEX). BE inhibited the adipocyte differentiation induced by insulin plus IBMX and DEX (IS-IBMX-DEX) of 3T3-L1 preadipocytes in a dose-dependent manner. The differences in the glucose uptake and differentiation inhibitory activities between untreated cells and those treated with BE were significant (P < 0.01). The inhibitory activity was further demonstrated by drastic reductions of peroxisome proliferator-activated receptor γ2 (PPARγ2) mRNA and glucose transporter-4 (GLUT4) protein in cells induced from preadipocytes with IS-IBMX-DEX in the presence of BE. The unique combination of a glucose uptake stimulatory activity, the absence of adipocyte differentiation activity and effective inhibition of adipocyte differentiation induced by IS-IBMX-DEX in 3T3-L1 cells suggest that BE may be useful for prevention and treatment of hyperglycemia and obesity in type II diabetics.
Benincasa hispida
Effects of Fractions from Benincasa hispida on Inhibition of Adipogenesis in 3T3-L1 preadipocytes
The effects of three fractions, hexane (BHHH), chloroform (BHHC), and ethyl acetate (BHHE), from water extract of Benincasa hispida on the underlying mechanisms of Adipogenesis were investigated in 3T3-L1 cells. Intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to control, lipid accumulation significantly decreased by 11% and 13% upon treatment with BHHC and BHHE, respectively at a concentration of 50 μg/mL. Intracellular triglyceride (TG) levels were also Reduced by 21% and 16%, respectively, at the same concentration. To determine the mechanism behind the reductions in TG content and lipid accumulation, glycerol release and expression levels of Adipogenic marker genes were measured. The levels of free glycerol released into culture medium increased by 13% and 17% upon treatment with BHHC and BHHE, respectively.
In subsequent measurements using real-time polymerization chain reaction, the mRNA levels of PPARγ, C/EBPα, and leptin significantly decreased upon treatment with BHHE (45%, 67%, and 35%) in comparison with non-treated control. These results suggest that BHHE Inhibits Adipocyte Differentiation by blocking PPARγ, C/EBPα, and leptin gene expression in 3T3-L1 cells , resulting in Reduced lipid accumulation, increased glycerol release, and intracellular triglycerides.
Berberine
This study is designed to investigate the effects of berberine (BBR) on galectin-3 (Gal-3) and the relationships to its suppressive activities on Adipocyte Differentiation , proliferation and Adiposity . Our results showed that BBR greatly suppressed the Differentiation and proliferation of mouse primary preadipocytes isolated from epididymal white Adipose Tissue (eWAT), during which the expression level of Gal-3 was down-regulated significantly. Overexpression of Gal-3 totally abolished the suppressive activities of BBR on Gal-3 expression, Preadipocyte Differentiation and proliferation. BBR Reduced Gal-3 promoter activity, destabilized its mRNA and Inhibited firefly luciferase activity of a recombinant plasmid containing the Gal-3 3′ untranslated region (UTR). Furthermore, BBR up-regulated microRNA (miRNA) let-7d expression and the suppressive activity on Gal-3 3′UTR was abolished by point mutation on the let-7d binding site. In mice fed a high-fat diet (HFD), BBR up-regulated let-7d and down-regulated Gal-3 expression in eWAT; it also suppressed Adipocyte Differentiation and proliferation and Reduced Adiposity greatly.
In summary, our study proves that BBR Inhibits the Differentiation and proliferation of Adipocytes through down-regulating Gal-3, which is closely associated with its Anti-Obesity effect. Our results may support the future clinical application of BBR for the treatment of Obesity or related diseases.
Bergamottin (Bergamot)
Bergamottin Inhibits Adipogenesis in 3T3-L1 cells and Weight Regulation in Diet-Induced Obese Mice
Obesity is a serious and increasing health problem worldwide, and the Inhibition of Adipogenesis is considered to be a potential therapeutic target for it. Bergamottin (BGM), a component of grapefruit juice, has been reported to regulate Lipolysis. However, the physiological role of BGM in Obesity has not been evaluated so far. In the present study, we investigated the effects of BGM on Obesity in 3T3-L1 cells and in mice fed a high-fat diet (HFD). BGM Inhibited Adipogenic Differentiation of 3T3-L1 cells along with a significant decrease in the lipid content by downregulating the expression of two critical Adipogenic factors, CCAAT enhancer-binding protein-alpha (C/EBP𝛼α) and peroxisome proliferator activated receptor-gamma (PPAR𝛾γ).
The expressions of target proteins such as Adipocyte fatty acid-binding protein (aP2), adiponectin, and resistin were also decreased by BGM. It activated AMP-activated protein kinase (AMPK) by increasing phosphorylation of AMPK and the downstream target acetyl-CoA carboxylase (ACC), indicating that BGM exerted its antiAdipogenic effect through AMPK activation. In the HFD-induced obese mouse model, BGM administration significantly Reduced the weight and sizes of white Adipose Tissue as well as the Weight Gain of mice fed HFD. Moreover, UCP1 and PGC1𝛼α expressions, well-known as brown Adipocyte marker genes, were higher in the BGM-treated HFD mice than that in the HFD-induced obese mice. This study suggests that BGM suppress Adipogenesis by AMPK activation in vitro and Reduce s body weight in vivo.
Betanin (Beta vulgaris)
The Inhibitory Effect of Betanin on Adipogenesis in 3T3-L1 Adipocytes
Betanin, a natural pigment that presents ubiquitously in plants, has been reported to show biological effects. However, not much is known on the effectiveness of betanin in regulating Fat Accumulation. Therefore, the aim of this study is to explore the Inhibitory effect of betanin on Adipogenesis in 3T3-L1 Adipocytes and its mechanism action. The results show betanin significantly Inhibited oil red O-stained material (OROSM) and triglyceride levels in 3T3-L1 Adipocytes, indicating betanin Inhibited lipid accumulation in 3T3-L1 Adipocytes. In addition, the peroxisome proliferator–activated receptor γ (PPARγ) expression was significantly Inhibited in the betanin-treated Adipocytes, implying that betanin suppressed the cellular PPARγ expression in 3T3-L1 Adipocytes.
Moreover, the suppression of lipid accumulation by betanin occurred by decreasing the gene expression of PPARγ, CCAAT-enhancer-binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c). Taken together, these findings suggest betanin may be a mediator of Adipocyte accumulation, leading to the Inhibition of lipogenesis in 3T3-L1 Adipocytes and betanin is therefore potentially useful for designing new antiAdipogenic agent.
Bisdemethoxycurcumin (Curcuma longa)
Obesity is caused by excessive accumulation of body fat and is closely related to complex metabolic diseases. Adipogenesis is a key process that is required in Adipocyte hypertrophy in the development of Obesity. Curcumin (Cur) has been reported to Inhibit Adipocyte Differentiation, but the Inhibitory effects of other curcuminoids present in turmeric, such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), on Adipogenesis have not been investigated. Here, we investigated the effects of curcuminoids on Adipogenesis and the molecular mechanisms of Adipocyte Differentiation. Among three curcuminoids, BDMC was the most effective suppressor of lipid accumulation in Adipocytes. BDMC suppressed Adipogenesis in the early stage primarily through attenuation of mitotic clonal expansion (MCE). In BDMC-treated preadipocytes, cell cycle arrest at the G0/G1phase was found after initiation of Adipogenesis and was accompanied by downregulation of cyclin A, cyclin B, p21, and mitogen-activated protein kinase (MAPK) signaling.
The protein levels of the Adipogenic transcription factors peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding proteins (C/EBP)α were also Reduced by BDMC treatment. Furthermore, 0.5% dietary BDMC (w/w) significantly lowered body Weight Gain and Adipose Tissue Mass in high-fat diet (HFD)-fed mice. The results of H&E staining showed that dietary BDMC Reduced hypertrophy in Adipocytes. These results demonstrate for the first time that BDMC suppressed Adipogenesis in 3T3-L1 Adipocytes and prevented HFD-induced Obesity. Our results suggest that BDMC has the potential to Prevent Obesity.
Blumea balsamifera
Anti-Obesity Effect of Blumea balsamifera Extract in 3T3-L1 preadipocytes and Adipocytes
Obesity, the leading metabolic disease in the world, is a serious health problem in industrialized countries. We investigated the Anti-Obesity effect of Blumea balsamifera extract on Adipocyte Differentiation of 3T3-L1 preadipocytes and Anti-Obesity effect of 3T3-L1 Adipocytes. We found that treatment with an extract of Blumea balsamifera suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity without affecting cell viability in 3T3-L1 preadipocytes and Adipocytes.
Furthermore, Blumea balsamifera extract brought significant attenuation of expressions of key Adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT element binding protein (C/EBPs) and leptin, however, induced up-regulation of adiponectin at the protein level in 3T3-L1 preadipocytes and Adipocytes. These results suggest that Blumea balsamifera extract may block Adipogenesis, at least in part, by decreasing key Adipogenic transcription factors in 3T3-L1 preadipocytes and may have antiatherogenic, anti-inflammatory, and AntiDiabetic effects through up-regulation of adiponectin in 3T3-L1 Adipocytes.
Boldine (Peumus boldus)
The Aporphine Alkaloid Boldine Induces Adiponectin Expression and Regulation in 3T3-L1 cells
Adiponectin is an adipokine secreted by differentiated Adipocytes . Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with Metabolic Syndrome or cardiovascular disease. Natural compounds that can Prevent oxidative stress mediated Inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor (PPAR)-γ, in 3T3-L1 cells.
Differentiated 3T3-L1 Adipocytes were exposed to either hydrogen peroxide (H2O2) (100 μM) or tumor necrosis factor-α (TNFα) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5–100 μM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARγ, and C/EBPα to half of the control levels. Boldine, at all concentrations, counteracted the Inhibitory effect of H2O2 or TNFα and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5–25 μM) having a larger inductive effect compared to higher concentrations (50–100 μM). Boldine treatment alone in the absence of H2O2 or TNFα was also able to induce adiponectin at the inductive phase of Adipogenesis.
Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in Obesity-related cardiovascular disease.
Bromophenol (Polysiphonia morrowii)
The aim of the present study was to investigate the effect of 5‐bromo‐3,4‐dihydroxybenzaldehyde (BD) isolated from Polysiphonia morrowii on Adipogenesis and Differentiation of 3T3‐L1 preadipocytes into mature Adipocytes and its possible mechanism of action. Levels of lipid accumulation and triglyceride were significantly lower in BD treated cells than those in untreated cells. In addition, BD treatment Reduced protein expression levels of peroxisome proliferator‐activated receptor‐γ, CCAAT/enhancer‐binding proteins α, and sterol regulatory element‐binding protein 1 compared with control (no treatment).
It also Reduced expression levels of adiponectin, leptin, fatty acid synthase, and fatty acid binding protein 4. AMP‐activated protein kinase activation was found to be one specific mechanism involved in the effect of BD. These results demonstrate that BD possesses Inhibitory effect on Adipogenesis through activating AMP‐activated protein kinase signal pathway.
Butein Chalconoid
Butein is a novel Anti-Adipogenic compound
Rhus verniciflua Stokes (RVS) has been used as a traditional herbal medicine for its various biological activities including Anti-Adipogenic effects. Activity-guided separation led to the identification of the Anti-Adipogenic functions of butein. Butein, a novel Anti-Adipogenic compound, robustly suppressed lipid accumulation and Inhibited expression of Adipogenic markers. Molecular studies showed that activated transforming growth factor-β (TGF-β) and suppressed signal transducer and activator of transcription 3 (STAT3) signaling pathways were mediated by butein. Analysis of the temporal expression profiles suggests that TGF-β signaling precedes the STAT3 in the butein-mediated Anti-Adipogenic cascade.
Small interfering RNA-mediated silencing of STAT3 or SMAD2/3 blunted the Inhibitory effects of butein on Adipogenesis indicating that an interaction between two signaling pathways is required for the action of butein. Upon butein treatments, stimulation of TGF-β signaling was still preserved in STAT3 silenced cells, whereas regulation of STAT3 signaling by butein was significantly impaired in SMAD2/3 silenced cells, further showing that TGF-β acts upstream of STAT3 in the butein-mediated anti-Adipogenesis.
Capsaicin
Effects of Capsaicin on Induction of Apoptosis and Inhibition of Adipogenesis in 3T3-L1 cells
Currently, at the beginning of the 21st century, Obesity has become the leading metabolic disease in the world. It is a serious health problem in industrialized countries. Previous research has suggested that decreased Preadipocyte Differentiation and proliferation and decreased lipogenesis are mechanisms to Reduce Obesity. In the present study, the effects of capsaicin on the induction of apoptosis and Inhibition of lipid accumulation in 3T3-L1 preadipocytes and Adipocytes were investigated. The results demonstrated that capsaicin decreased cell population growth of 3T3-L1 preadipocytes, assessed with the MTT assay. Flow cytometric analysis of 3T3-L1 preadipocytes exposed to capsaicin showed that apoptotic cells increased in a time- and dose-dependent manner. Treatment with capsaicin decreased the number of normal cells and increased the number of early apoptotic and late apoptotic cells in a dose-dependent manner.
The treatment of cells with capsaicin caused the loss of mitochondria membrane potential (ΔΨm). The induction of apoptosis in 3T3-L1 preadipocytes by capsaicin was mediated through the activation of caspase-3, Bax, and Bak, and then through the cleavage of PARP and the down-regulation of Bcl-2. Moreover, capsaicin significantly decreased the amount of intracellular triglycerides and glycerol-3-phosphate dehydrogenase (GPDH) activity in 3T3-L1 Adipocytes. Capsaicin also Inhibited the expression of PPARγ, C/EBPα, and leptin, but induced up-regulation of adiponectin at the protein level. These results demonstrate that capsaicin efficiently induces apoptosis and Inhibits Adipogenesis in 3T3-L1 preadipocytes and Adipocytes.
Carduus crispus
In this study, the effects of a methanol (MeOH) extract of Carduus crispus L. (Asteraceae) on Adipogenesis was investigated in 3T3-L1 cells. To differentiate preadipocytes to Adipocytes, confluent 3T3-L1 preadipocytes were treated with a hormone mixture, which included isobutylmethylxanthine, dexamethasone, and insulin (MDI). The methanol extract of C. crispus significantly decreased Fat Accumulation by Inhibiting Adipogenic signal transcriptional factors in MDI-induced 3T3-L1 cells in a dose-dependent manner.
In MTT assays and on PI-staining, methanol extract of C. crispus Inhibited the proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE). The Anti-Adipogenic effect of the Carduus extract seemed to be associated with the up-regulation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways within the first 2 days after MDI treatment. These results suggest that methanol extract of C. crispus might be beneficial for the treatment of Obesity.
Carnosic acid (Salvia japonica Thunb.)
In the previous studies, we reported that carnosic acid (CA) and carnosol (CS) originating from rosemary protected cortical neurons by activating the Keap1/Nrf2 pathway, which activation was initiated by S-alkylation of the critical cysteine thiol of the Keap1 protein by the “electrophilic”quinone-type of CA or CS. Here, we found that CA and CS Inhibited the in vitro Differentiation of mouse preadipocytes, 3T3-L1 cells, into Adipocytes. In contrast, other physiologically-active and rosemary-originated compounds were completely negative. These actions seemed to be mediated by activation of the antioxidant-response element(ARE) and induction of phase2 enzymes. This estimation is justified by our present findings that only CA and CS among rosemary-originated compounds significantly activated the ARE and induced the phase2 enzymes. Next, we performed cDNA microarray analysis in order to identify the gene(s) responsible for these biological actions and found that phase2 enzymes (Gsta2, Gclc, Abcc4, and Abcc1), all of which are involved in the metabolism of glutathione (GSH), constituted 4 of the top 5 CA-induced genes.
Conclusions: CA exerts its Anti-Adipogenic effect in a multifactorial manner by interfering mitotic clonal expansion, altering the ratio of the different C/EBPβ forms, inducing the loss of C/EBPβ proper subnuclear distribution, and blocking the expression of C/EBPα and PPARγ.
General significance: Understanding the molecular mechanism by which CA blocks Adipogenesis is relevant because CA could be new a food additive beneficial for the prevention and/or treatment of Obesity.
Celastrol (Tripterygium wilfordii)
Objective: Celastrol, a triterpene from the root bark of the Chinese medicinal plant Tripterygium wilfordii, has been shown to exhibit anti-oxidant, anti-inflammatory, anti-cancer and insecticidal activities. Also, it has been demonstrated that celastrol has obesity-controlling effects in diet-induced obesity mice. However, direct evidence that celastrol contributes to the development of adipocyte differentiation and lipolysis has not been fully elucidated. Moreover, no previous studies have evaluated whether celastrol may regulate adipogenic transcriptional markers in adipocytes.
Materials/Methods: In order to address the questions above, we extended previous observations and investigated in vitro celastrol signaling study whether celastrol may regulate differentiation, lipolysis and key adipogenic transcriptional pathways in 3T3-L1 adipocytes.
Results: Treatment of celastrol not only inhibited adipocyte differentiation (lipid accumulation, glyceraldehyde-3-phosphate dehydrogenase activity and triglyceride content) but also increased lipolysis (glycerol release and free fatty acid release) in 3T3-L1 adipocytes. In addition, all celastrol-regulated functional activities were controlled by PPARγ2 and C/EBPα signaling pathways in duration of celastrol’s treatment in 3T3-L1 adipocytes.
Conclusion: Our initial data from in vitro celastrol signaling studies suggest novel insights into the role of PPARγ2 and C/EBPα as probable mediators of the action of celastrol in regulating adipocyte differentiation and lipolysis in 3T3-L1 adipocytes.
Chromolaena odorata
Anti-Adipogenic effect of Flavonoids from Chromolaena odorata leaves in 3T3-L1 Adipocytes
Objective: The leaves of Chromolaena odorata, a highly invasive shrub found growing wild worldwide, are traditionally used for wound healing. Due to its high flavonoidcontents, we aimed to find a new application for this plant. Preliminary tests using its ethanolic leaf extract showed that it could suppress the accumulation of lipids in Adipocytes. We therefore studied the Anti-Adipogenic effect of several C. odorata leaf extracts and the relationship between molecular structure and bio-activity of its isolated flavonoid constituents using 3T3-L1 preadipocytes /Adipocytes as a model.
Methods: Three leaf extracts and thirteen Flavonoids isolated from C. odorata were tested for their effect on lipid accumulation in 3T3-L1 Adipocytes using AdipoRed reagent, with quercetin as the positive control. The effects of active Flavonoids on the Adipocytes were confirmed by oil red O staining and visualized under a light microscope.
Results: n-Hexane and ethyl acetate extracts of C. odorata leaves displayed Anti-Adipogenic activity. The latter extract was the more potent one, especially at 40 µg/mL. Four Flavonoids, pectolinarigenin, kaempferide, 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone and dillenetin, exhibited significant, concentration-dependent Inhibitory effects on lipid accumulation in 3T3-L1 Adipocytes . The most potent flavonoid obtained in this study was 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone, which caused 75% and 90% Inhibition of cellular lipid accumulation at 30 and 50 µmol/L, respectively. Both kaempferide and 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone were major constituents in the ethyl acetate extract of this plant.
Conclusion: C. odorata leaves contained several Flavonoids with Anti-Adipogenic effects against lipid accumulation in 3T3-L1 Adipocytes. The plant, normally considered a useless weed, may actually provide an abundant source of biologically active Flavonoids.
Chrysanthemum zawadskii
Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 cells
Obesity is a major risk factor for various metabolic diseases such as cardiovascular disease, hypertension, and type 2 Diabetes mellitus. In this study, we prepared ethanol extracts from Agastache rugosa (ARE), Chrysanthemum zawadskii (CZE), Mentha arvensis (MAE), Perilla frutescens (PFE), Leonurus sibiricus (LSE), Gardenia jasminoides (GJE), and Lycopus coreanus (LCE). The anti-oxidant and Anti-Adipogenic effects were evaluated. The IC50 values for ascorbic acid and LCE against 2,2-diphenyl-1-picrylhydrazyl radicals were 246.2 μg/mL and 166.2 μg/mL, respectively, followed by ARE (186.6 μg/mL), CZE (198.6 μg/mL), MAE (337.1 μg/mL), PFE (415.3 μg/mL), LSE (548.2 μg/mL), and GJE (626.3 μg/mL). In non-toxic concentration ranges, CZE had a strong Inhibitory effect against 3T3-L1 adipogenes (84.5%) than those of the other extracts.
Furthermore, the Anti-Adipogenic effect of CZE is largely limited in the early stage of Adipogenesis, and we revealed that the Inhibitory role of CZE in Adipogenesis is required for the activation of Wnt signaling. Our results provide scientific evidence that the Anti-Adipogenic effect of CZE can be applied as an ingredient for the development of functional foods and nutri-cosmetics for Obesity prevention.
Chrysin (Oroxylum indicum)
Chrysin induces brown fat–like phenotype and enhances lipid metabolism in 3T3-L1 Adipocytes
Objectives: Many studies have to do with promising therapeutic phytochemicals such as Flavonoids to treat Obesity and related complications, and a number of dietary compounds have been proposed as tools for increasing energy expenditure and decreasing Fat Accumulation in mammals. Here, we show that the flavonoid chrysin induces browning of 3T3-L1 Adipocytes via enhanced expression of brown fat–specific genes and proteins as well as enhances lipid metabolism.
Methods: Chrysin-induced fat browning was investigated by determining expression levels of brown fat–specific genes and proteins by real-time polymerase chain reaction and immunoblot analysis, respectively.
Results: Chrysin enhanced expression of brown fat–specific markers and increased protein levels of peroxisome proliferator-activated receptor (PPAR)α, PPARγ, PPARδ, phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase, hormone sensitive lipase, perilipin, carnitine palmitoyltransferase 1, acyl-coenzyme A oxidase 1, peroxisome proliferator-activated receptor-1 alpha (PGC-1α), and uncoupling protein 1 (UCP-1), suggesting its possible role in augmentation of Lipolysis, fat oxidation, and thermogenesis as well as reduction of lipogenesis. Increased expression of UCP-1 and other brown fat–specific markers was possibly mediated by chrysin-induced activation of AMPK based on the fact that Inhibition of AMPK by dorsomorphin abolished expression of PR domain-containing 16, UCP-1, and PGC-1α while the activator 5-aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins.
Conclusion: Our findings suggest that chrysin plays a dual modulatory role in the form of inducing the brown-like phenotype as well as enhancing lipid metabolism and thus may be explored as a potentially promising food additive for prevention of Obesity.
Cinnamomum verum
This study was performed to evaluate the AntiObesity effect of supercritical fluid extracts (SFC) and marc methanol extracts (SFM) from Cinnamomum verum in 3T3-L1 preadipocytes. In inducing the Differentiation of 3T3-L1 preadipocytes in the presence of an Adipogenic cocktail, iso-butylmethylanthine (IBMX), dexamathasone, and insulin, treatment with fraction residue SFC and SFM. SFC significantly Reduced the mRNA expression of the transcription factor peroxisome proliferator-activatedreceptor-γ (PPARγ), the sterol regulatory-element-binding protein-1c (SREBP1c), and the CCAAT enhancer-binding-protein α (C/EBPα) in a concentration-dependent manner.
Cirsium brevicaule
Cirsium brevicaule A. GRAY leaf Inhibits Adipogenesis in 3T3-L1 cells and C57BL/6 mice
Results: Treatment of 3T3-L1 Adipocytes with a hexane extract of CL significantly Reduced cellular lipid accumulation and expression of the fatty acid synthase (FASN) gene. Dietary CL Reduced the serum levels of non-esterified fatty acids in HFD-fed mice. Significant decreases in subcutaneous WAT weight and associated FASN gene expression were observed in the mice fed the experimental CL diet. Dietary CL also Reduced the hepatic lipid and serum levels of a hepatopathic indicator in the HFD-fed mice. A significant reduction in mRNA levels of FASN and HMG-CoA reductase were observed in the livers of the CL-diet group. Dietary CL, on the other hand, increased in the hepatic mRNA levels of genes related to β-oxidation, namely peroxisome proliferator-activated receptor α, calnitine palmitoyltrasferase 1A, and uncoupling protein 2. Expression of the insulin receptor gene was also significantly increased in the livers of mice-fed the CL diet.
Conclusions: The present study therefore demonstrated that CL Suppresses lipid accumulation in the WAT and liver partly through Inhibiting mRNA levels of FASN gene and enhancing the Lipolysis -related gene expression.
Cirsium setidens
Cirsium setidens Nakai, a wild perennial herb, grows mainly in Gangwon province, Korea, and has been reported to contain bioactive ingredients with various medicinal activities, including the treatment of edema, bleeding, and hemoptysis. However, the potential AntiObesity effects of C. setidens Nakai have not been fully investigated. This study evaluated the AntiObesity effect of standardized C. setidens Nakai ethanolic extract (CNE) in 3T3-L1 Adipocytes and in obese C57BL/6J mice fed a high-fat diet. CNE suppressed the expression of lipogenic genes and increased the expression of lipolytic genes. The AntiAdipogenic and antilipogenic effects of CNE appear to be mediated by the Inhibition of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) expressions.
Moreover, CNE stimulated fatty acid oxidation in an AMPK-dependent manner. CNE-treated groups of C57BL/6J mice showed Reduced body weights and Adipose Tissue weight and improved serum lipid profiles through the downregulation of PPARγ, C/EBPα, fatty acid binding protein 4 (FABP4), sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS) and the upregulation of adiponectin and carnitine palmitoyltransferase-1 (CPT-1) in obese C57BL/6J mice fed a high-fat diet. These results suggest that CNE may have an AntiObesity effect on Adipogenesis and lipid metabolism in vitro and in vivo and present the possibility of developing a treatment for Obesity with nontoxic natural resources.
Cirsium setidens Nakai contains bioactive compounds that exert biological activities. Method validation for analysis of the pectolinarin content in Cirsium setidens extracts (CSE) and radical scavenging-linked AntiObesity activities using 3T3-L1 cells and C57BL/6 mice were performed. The pectolinarin content of CSE was 2.81±0.01 mg/g with a high degree of linearity in calibration curves (R2=0.9999).
CSE exhibited free radical-scavenging activities and a reducing power. CSE and pectolinarin Inhibited lipid accumulation during Adipogenesis of 3T3-L1 cells via down-regulation of Adipogenic transcription factors. CSE supplementation suppressed body weight in C57BL/6 mice fed a high fat diet and Reduced plasma total cholesterol, triglyceride, insulin, and glucose levels. Pectolinarin-enriched CSE can be considered as a good source of natural Antioxidants and AntiObesity ingredients.
Citrus aurantium
Citrus aurantium Flavonoids Inhibit Adipogenesis through the Akt signaling pathway in 3T3-L1 cells
Background: Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 Diabetes , hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium Flavonoids (CAF) on the Inhibition of Adipogenesis and Adipocyte Differentiation in 3T3-L1 cells.
Methods: During Adipocyte Differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of Adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during Adipocyte Differentiation.
Results: The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by Adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9), which may Reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only Inhibited triglyceride accumulation during Adipogenesis but also contributed to the Lipolysis of Adipocytes.
Conclusions: In the present study, we demonstrate that CAF suppressed Adipogenesis in 3T3-L1 Adipocytes . Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently Inhibits the activation of PPARγ and C/EBPα. The Anti-Adipogenic activity of CAF was mediated by the Inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately Inhibiting Adipocyte Differentiation.
Clitoria ternatea
Clitoria ternatea (commonly known as blue pea) flower petal extract (CTE) is used as a natural colorant in a variety of foods and beverages. The objective of study was to determine the Inhibitory effect of CTE on Adipogenesis in 3T3-L1 preadipocytes. The phytochemical profiles of CTE were analyzed by liquid chromatography and tandem Mass spectrometry (LC-MS/MS). Anti-Adipogenesis effect of CTE was measured by using Oil Red O staining, intracellular triglyceride assay, quantitative real-time PCR and western blot analysis in 3T3-L1 Adipocytes. Cell cycle studies were performed by flow cytometry. Lipolysis experiments were performed using a colorimetric assay kit. In early stages, CTE demonstrated Anti-Adipogenic effects through Inhibition of proliferation and cell cycle retardation by suppressing expression of phospho-Akt and phospho-ERK1/2 signaling pathway.
The results also showed that CTE Inhibited the late stage of Differentiation through diminishing expression of Adipogenic transcription factors including PPARγ and C/EBPα. The Inhibitory action was subsequently attenuated in downregulation of fatty acid synthase and acetyl-CoA carboxylase, causing the reduction of TG accumulation. In addition, CTE also enhanced catecholamine-induced Lipolysis in Adipocytes. These results suggest that CTE effectively attenuates Adipogenesis by controlling cell cycle progression and downregulating Adipogenic gene expression.
Camellia ptilophylla
Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced Obesity , hepatic steatosis and hyperlipidemia in mice. The present study aimed to investigate the Anti-Adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic Differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly Inhibited triglyceride accumulation in mature Adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key Adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α).
Colocynth (Citrullus colocynthis)
Adipogenesis is the overall process of Adipocyte Differentiation. With a positive energy balance, intracellular accumulation of triglyceride increases through the generation of functional Adipocytes. This occurs with Adipogenesis of undifferentiated preadipocytes. Citrullus colocynthis (CC), a member of the Cucurbitaceae family, is a desert viny plant native to North Africa. The effect of ethanolic seed extracts of colocynth (SCEE) on Adipogenesis was investigated using 3T3-L1 preadipocytes. Cell viability was measured using the MTT assay; triglycerides were stained with Oil Red O and Adipogenesis-related gene expressions were quantified using qRT-PCR. Results showed that SCEE helps to Inhibit intracellular triglyceride accumulation during Adipogenesis without affecting cell viability. Likewise, SCEE not only showed Anti-Adipogenic activities, essentially during the early stage, but their effects during the middle and late stages were very low.
Coptis chinensis
Objectives: This study was to investigate the antioxiative capacity, AntiObesity effects of Atractylodes Rhizoma Alba, Houttuyniae Herba, Lonicerae Flos, Scutellariae Radix, and Coptidis Rhizoma on Raw 264.7 and 3T3-L1 cell lines.
Methods: Three different types of herb extracts (A. Rhizoma Alba, H. Herba, L. Flos, S. Radix, and C. Rhizoma; water 100%, ethanol 30%, ethanol 100%) were used in this study. Total Polyphenol compound, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reactive oxygen species (ROS) activity, NO production and cell proliferation were measured.
Results: Total Polyphenol compound measurement of L. Flos, A. Rhizogenes, and C. Rhizoma extracts were higher than A. Rhizoma Alba, H. Herba. DPPH radical scavenging activity, ROS activity and NO production of S. Radix, C. Rhizoma extracts were lower than L. Flos, A. Rhizoma, and H. Herba.
Conclusions: Metformin and S. Radix, C. Rhizoma, A. Rhizoma Alba, and L. Flos extracts combination groups showed synergistic effect on Adipocyte Differentiation Inhibition and antioxidative activity.
Cordycepin (Cordyceps sinensis)
This study aimed to investigate the effects of Cordyceps sinensis extract (CSE) and Gymnema inodorum extract (GIE), used alone and combined, on AntiAdipogenesis in 3T3-L1 cells . Oil Red O staining was used to examine the effects of these extracts on Inhibition of intracellular lipid accumulation in 3T3-L1 Adipocytes and on lipid droplet morphology. Fourier transform-infrared (FTIR) microspectroscopy was used to examine biomolecular changes in 3T3-L1 Adipocytes . The pancreatic lipase assay was used to evaluate the Inhibitory effects of CSE and GIE on pancreatic lipase activity.
Taken together, the results indicated that CSE, GIE, and their combination suppressed lipid accumulation. The FTIR microspectroscopy results indicated that CSE, GIE, and their combination had Inhibitory effects on lipid accumulation in the Adipocytes. Compared with the untreated Adipocytes, the signal intensity and integrated areas of glycogen and other carbohydrates, the acyl chain of phospholipids, and the lipid/protein ratios of the CSE, GIE, alone, and combined treated Adipocytes were significantly lower (p < 0.05). Combination treatment resulted in a synergistic effect on lipid accumulation reduction in the Adipocytes. Principal component analysis of the biomolecular changes revealed six distinct clusters in the FTIR spectra of the sample cells. The pancreatic lipase assay results indicated that CSE and GIE Inhibited the pancreatic lipase activity in a dose-dependent manner (mean ± standard error of the mean IC50 values, 2312.44 ± 176.55 μg mL−1 and 982.24 ± 44.40 μg mL−1, resp.). Our findings indicated that FTIR microspectroscopy has potential application for evaluation of the effectiveness of medicinal plants and for the development of infrared biochemical Obesity markers useful for treating patients with Obesity.
Coumestrol
Coumestrol modulates Akt and Wnt/β-catenin signaling during the attenuation of Adipogenesis
Coumestrol is a natural phytochemical present in plants such as red clover and soy, and has been reported to stimulate the estrogen receptor as a major phytoestrogen. While the molecular mechanisms responsible for the Anti-Adipogenic effects of phytoestrogens such as genistein and daidzein have been previously investigated, the effects of coumestrol on Adipogenesis remain to be elucidated. We observed that coumestrol dose-dependently attenuates MDI (mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-induced lipid accumulation, consistent with an earlier study, while significantly Inhibiting MDI-induced Adipogenesis in the first 48 hours of Differentiation, a critical time window for Anti-Adipogenic effects. Coumestrol treatment suppressed MDI-induced protein expression of PPARγ and C/EBPα in Adipocytes, leading to the subsequent downregulation of FAS and aP2 expression. Akt and GSK3β were phosphorylated shortly after MDI stimulation, and these responses were Inhibited by coumestrol treatment.
Coumestrol also increased LRP6 protein expression, resulting in the recovery of β-catenin downregulation by MDI, while attenuating MDI-induced downregulation of Wnt10b. In addition, mRNA and protein expression of c-Myc and cyclin D1, target genes of β-catenin, were both recovered by coumestrol treatment. These results suggest that coumestrol Inhibits Adipocyte Differentiation via regulation of Akt and Wnt/β-catenin signaling and may have potential for development as an agent to Prevent Adipogenesis.
Cranberry (Oxycoccus quadripetalus)
Cranberries (Oxycoccus quadripetalus) Inhibit Adipogenesis and lipogenesis in 3T3-L1 cells
Cryptotanshinone (Salvia miltiorrhiza)
Background: Cryptotanshinone (CT), a major tanshinonefound in Salvia miltiorrhiza Bunge (Lamiaceae), has various pharmacological effects such as antitumor, anti-inflammatory, and antioxidant properties. Despite its well-documented benefits in a wide range of diseases, the effect of CT on Adipocyte Differentiation has not been well characterized.
Purpose: The present study was designed to determine the in vitro Anti-Adipogenic effect and underlying molecular mechanisms of CT using 3T3-L1 murine Pre-Adipocytes .
Methods: We measured the levels of intracellular triglyceride accumulation and mRNA and protein expression of key Adipogenic transcription factors and their target genes.
Results: Treatment with CT drastically Reduced lipid accumulation in a dose- and time-dependent manner. Molecular assays showed that CT effectively suppressed the expression of C/EBPβ, C/EBPα , and PPARγ and of their target Adipocyte -specific genes aP2, adiponectin, and GLUT4 but activated the expression of Anti-Adipogenic genes such as GATA2, CHOP10, and TNF-α. CT treatment also Inhibited the phosphorylation of STAT3 in the early phase of Adipogenesis . A small-interfering-RNA-mediated knock-down of STAT3 potentiated the Anti-Adipogenic effect of CT.
Conclusion: Taken together, the results suggest that CT may be a good Anti-Adipogenic candidate because it regulates STAT3 during early Adipogenesis.
Curcumin
Conjugation of curcumin (CCM) by polyethylene glycol (PEG) has been previously developed to improve water solubility of the natural form of CCM and its antiproliferative role in some human cancer cell lines. This study examined the cellular uptake kinetics of the natural form of CCM and CCM−PEG. Their cytotoxic effect in proliferating preadipocytes and AntiAdipogenic property in differentiating preadipocytes had also been investigated. CCM and CCM−PEG were found to be differently absorbed in 3T3-L1 preadipocytes and Adipocytes with a limited amount of CCM−PEG absorption in the cell. The improved water solubility of CCM−PEG was correlated with increased cellular retention of CCM in 3T3-L1 cells, particularly in preadipocytes.
Consequently, CCM−PEG treatment sensitized proliferating preadipocytes to CCM-induced cell toxicity. Furthermore, incubation of differentiating 3T3-L1 cells with CCM−PEG resulted in improvement of the Inhibitory role of CCM in Adipocyte Differentiation with no toxic effect. These results suggest that pegylation-improved water solubility and cellular retention of CCM may be uniquely useful for improving the delivery of CCM in preadipocytes and its AntiAdipogenic ability.
Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and angiogenesis and Obesity in C57/BL mice
Angiogenesis is necessary for the growth of Adipose Tissue. Dietary Polyphenols may suppress growth of Adipose Tissue through their antiangiogenic activity and by modulating Adipocyte metabolism. We investigated the effect of curcumin, the major Polyphenol in turmeric spice, on angiogenesis, Adipogenesis, Differentiation, apoptosis, and gene expression involved in lipid and energy metabolism in 3T3-L1 Adipocyte in cell culture systems and on body Weight Gain and Adiposity in mice fed a high-fat diet (22%) supplemented with 500 mg curcumin/kg diet for 12 wk. Curcumin (5–20 μmol/L) suppressed 3T3-L1 Differentiation, caused apoptosis, and Inhibited adipokine-induced angiogenesis of human umbilical vein endothelial cells.
Supplementing the high-fat diet of mice with curcumin did not affect food intake but Reduced body Weight Gain, Adiposity, and microvessel density in Adipose Tissue, which coincided with Reduced expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Curcumin increased 5′AMP-activated protein kinase phosphorylation, Reduced glycerol-3-phosphate acyl transferase-1, and increased carnitine palmitoyltransferase-1 expression, which led to increased oxidation and decreased fatty acid esterification. The in vivo effect of curcumin on the expression of these enzymes was also confirmed by real-time RT-PCR in subcutaneous Adipose Tissue. In addition, curcumin significantly lowered serum cholesterol and expression of PPARγ and CCAAT/enhancer binding protein α, 2 key transcription factors in Adipogenesis and lipogenesis. The curcumin suppression of angiogenesis in Adipose Tissue together with its effect on lipid metabolism in Adipocytes may contribute to lower body fat and body Weight Gain. Our findings suggest that dietary curcumin may have a potential benefit in preventing Obesity.
Cyanidine-3-O-Galactoside (Aronia melanocarpa)
Aronia melanocarpa are a rich source of Anthocyanins that have received considerable interest for their relations to human health. In this study, the Anti-Adipogenic effect of cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract (AM-Ex) and its underlying mechanisms were investigated in an in vivo system. Five-week-old male C57BL/6N mice were randomly divided into five groups for 8-week feeding with a control diet (CD), a high-fat diet (HFD), or a HFD with 50 (AM-Ex 50), 100 (AM-Ex 100), or 200 AM-Ex (AM-Ex 200) mg/kg body weight/day. HFD-fed mice showed a significant increase in body weight compared to the CD group, and AM-Ex dose-dependently Inhibited this Weight Gain. AM-Ex significantly Reduced the food intake and the weight of white fat tissue, including epididymal fat, retroperitoneal fat, mesenteric fat, and inguinal fat. Treatment with AM-Ex (50 to 200 mg/kg) Reduced serum levels of leptin, insulin, triglyceride, total cholesterol, and low density lipoprotein (LDL)-cholesterol.
Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that AM-Ex suppressed Adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma coactivator-1α, acetyl-CoA carboxylase 1, ATP-citrate lyase, fatty acid synthase, and Adipocyte protein 2 messenger RNA (mRNA) expressions. These results suggest that AM-Ex is potentially beneficial for the suppression of HFD-induced Obesity by modulating multiple pathways associated with Adipogenesis and food intake.
Our results showed that the Anti-Obesity effect of AM-Ex occured through down-regulation of the transcription factors PPARγ, C/EBPα, SREBP-1c, and Adipogenesis and lipogenesis-related genes, aP2, LPL, ACC1, ACL, and FAS. These results demonstrate that AM-Ex can be used as a preventive or therapeutic agent for Obesity. Future, animal and human studies are needed to further investigate the mechanism and proper concentration of AM to be used as Anti-Obesity agents.
Cyclopia subternata
The stems, leaves and flowers of Cyclopia have been consumed as aherbal tea ‘honeybush tea’ to treat various medical ailments since the 19th century. Plant Polyphenols are reported to Inhibit Adipogenesis in cell and animal models of Obesity. The aim of this study was to assess the effect of hot water extracts of two Cyclopia species, C. maculata and C. subternata on Obesity in an in vitro model. The total Polyphenol content of unfermented C. subternata, unfermented C. maculata and fermented C. maculata extracts was 25.6, 22.4 and 10.8 g GAE/100 g, respectively.
The major compounds present in the extracts were: the flavonoid, phloretin-3′,5′-di-C-glucoside in C. subternata, the xanthone, mangiferin in unfermented C. maculata and the flavanone, hesperidin in fermented C. maculata. All of the plant extracts Inhibited intracellular triglyceride and Fat Accumulation, and decreased PPARγ 2 expression. The higher concentrations of unfermented C. maculata (800 and 1600 μg/ml) and C. subternata(1600 μg/ml) were cytotoxic in terms of decreased mitochondrialdehydrogenase activity. Both fermented and unfermented C. maculata, at concentrations greater than 100 μg/ml, decreased cellular ATPcontent. Cyclopia maculata and C. subternata Inhibit Adipogenesis in vitro, suggesting their potential as Anti-Obesity agents.
Cyclopia maculata (honeybush tea) stimulates Lipolysis in 3T3-L1 Adipocytes
We have previously, for the first time, demonstrated that hot water extracts of Cyclopia maculata and Cyclopia subternata, endemic South African plants that are consumed as herbal teas, Inhibit Adipogenesis in 3T3-L1 Adipocytes. The aim of this study was to extend the Anti-Obesity investigations of these plants by quantifying Lipolysis in mature 3T3-L1 Adipocytes. Glycerol concentration in culturesupernatants was used as a marker of Adipocyte Lipolysis. Isoproterenol, a β-adrenergic agonist and a known lipolytic agent, was used as a positive control in our assays. Lipolysis was stimulated by all extracts, although statistical significance was noted for fermented (oxidised) C. maculata only. A concentration of 80 μg/ml ofC. maculata extract induced maximal Lipolysis (1.8-fold, p < 0.001).
The increased Lipolysis was accompanied by an increase in the expression of hormone sensitive lipase (1.6-fold, p < 0.05) and perilipin (1.6-fold,p < 0.05). The plant extracts, at the concentration range assayed (0–100 μg/ml), were not cytotoxic in terms of mitochondrialdehydrogenase and adenosine-5′-triphosphate activity. These results showed that C. maculata stimulates Lipolysis in mature 3T3-L1 Adipocytes, providing further support for the Anti-Obesity effects ofCyclopia spp.
Delphinidin-3-O–β-glucoside (D3G) is a health-promoting anthocyanin whose Anti-Obesity activity has not yet been thoroughly investigated. We examined the effects of D3G on Adipogenesis and lipogenesis in 3T3-L1 Adipocytes and primary white Adipocytes using real-time RT-PCR and immunoblot analysis. D3G significantly Inhibited the accumulation of lipids in a dose-dependent manner without displaying cytotoxicity. In the 3T3-L1 Adipocytes, D3G downregulated the expression of key Adipogenic and lipogenic markers, which are known as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBP1), CCAAT/enhancer-binding protein alpha (C/EBPα ), and fatty acid synthase (FAS).
Moreover, the relative protein expression of silent mating type information regulation 2 homolog 1 (SIRT1) and carnitine palmitoyltransferase-1 (CPT-1) were increased, alongside Reduced lipid levels and the presence of several small lipid droplets. Furthermore, D3G increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which suggests that D3G may play a role in AMPK and ACC activation in Adipocytes. Our data indicate that D3G attenuates Adipogenesis and promotes lipid metabolism by activating AMPK-mediated signaling, and, hence, could have a therapeutic role in the management and treatment of Obesity.
Abstract Delphinidin–3–O–β–glucoside (D3G) is a health-promoting anthocyanin whose anti–Obesity activity has not yet been thoroughly investigated. We examined the effects of D3G on Adipogenesis and lipogenesis in 3T3-L1 Adipocytes and primary white Adipocytes.
DHEA
Dehydroepiandrosterone (DHEA), a precursor sex steroid, circulates in sulphated form (DHEAS). Serum DHEAS concentrations are inversely correlated with Metabolic Syndrome components and in vivo/in vitro studies suggest a role in modulating adipose Mass. To investigate further, we assessed the in vitro biological effect of DHEA in white (3T3-L1 ) and brown (PAZ6) Preadipocyte cell lines and human primary preadipocytes.
DHEA (from 10−8 M) caused concentration-dependent proliferation Inhibition of 3T3-L1 and PAZ6 preadipocytes. Cell cycle analysis demonstrated unaltered apoptosis but indicated blockade at G1/S or G2/M in 3T3-L1 and PAZ6, respectively. Preadipocyte cell-line Adipogenesis was not affected.
In human primary subcutaneous and omental preadipocytes, DHEA significantly Inhibited proliferation from 10−8 M. DHEA 10−7 M had opposing effects on Adipogenesis in the two fat depots. Subcutaneous Preadipocyte Differentiation was unaffected or increased whereas omental preadipocytes showed significantly Reduced Adipogenesis.
We conclude that DHEA exerts fat depot-specific differences which modulate body composition by limiting omental fat production.
Diallyl trisulphide (onion)
The aim of the present study was to examine the effect of quercetin-rich onion peel extract (OPE) on anti-Differentiation in 3T3-L1 preadipocytes and the AntiObesity in high-fat fed rats. We found that lipid accumulations and TG contents in 3T3-L1 cells were markedly suppressed by OPE. The mRNA levels of activating protein (AP2) were down-regulated and those of carnitine palmitoyl transferase-1 α (CPT-1α) and fatty acid binding protein 4 (FABP4) were up-regulated by 75 and 100 μg/ml OPE. Body weight, retroperitoneal and mesenteric fat weights of SD rats were significantly lower in the 8 week high fat (HF) diet + 0.72% OPE group than in the HF group.
Peroxisome proliferator-activated receptor (PPAR)γ mRNA levels were down-regulated in the epididymal fat of OPE than those of control and HF, and significant down-regulation of CCAAT/enhancer binding protein (C/EBP)α mRNA levels in OPE was also observed than the control. The mRNA levels of CPT-1α and uncoupling protein-1 (UCP-1) were up-regulated by the OPE, while those of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were down-regulated in HF and OPE groups compared to control group. These results suggest that quercentin-enriched OPE may have AntiObesity effects by suppressing Preadipocyte Differentiation and Inhibiting Adipogenesis.
Dioscin (Dioscorea japonica)
Dioscin (DS) is a steroidal saponin present in a number of medicinal plants and has been shown to exert anticancer, antifungal and antiviral effects. The present study aimed to deternube the effects DS on the regulation of Adipogenesis and to elucidate the underlying mechanisms. In vitro experiments were performed using differentiating 3T3-L1 cells treated with various concentrations (0-4 µM) of DS for 6 days. A cell viability assay was performed on differentiating cells following exposure to DS. Oil Red O staining and triglyceride content assay were performed to evaluate the lipid accumulation in the cells. We also carried out the following experiments: i) flow cytometry for cell cycle analysis, ii) quantitative reverse transcription polymerase chain reaction for measuring Adipogenesis-related gene expression, and iii) western blot analysis to measure the expression of Adipogenesis transcription factors and AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and mitogen-activated protein kinase (MAPK) phosphorylation.
In vivo experiements were performed using mice with Obesity induced by a high-fat diet (HFD) that were treated with or without DS for 7 weeks. DS suppressed lipid accumulation in the 3T3-L1 cells without affecting viability at a dose of up to 4 µM. It also delayed cell cycle progression 48 h after the initiation of Adipogenesis. DS Inhibited Adipocyte Differentiation by the downregulation of Adipogenic transcription factors and attenuated the expression of Adipogenesis-associated genes. In addition, it enhanced the phosphorylation of AMPK and its target molecule, ACC, during the Differentiation of the cells. Moreover, the Inhibition of Adipogenesis by DS was mediated through the suppression of the phosphorylation of MAPKs, such as extracellular-regulated kinase 1/2 (ERK1/2) and p38, but not c-Jun-N-terminal kinase (JNK).
DS significantly Reduced Weight Gain in the mice with HFD-induced Obesity; this was evident by the suppression of Fat Accumulation in the abdomen. the present study reveals an Anti-Adipogenic effect of DS in vitro and in vivo and highlights AMPK/MAPK signaling as targets for DS during Adipogenesis.
Chenopodium formosanum
The aim of this study was to provide new insights into the role of the ethanolic extracts of Djulis (Chenopodium formosanum, EECF) and its bioactive compounds in preventing Adipogenesis in 3T3-L1 Adipocytes. The results demonstrated EECF significantly Inhibited oil red O-stained material (OROSM), triglyceride levels and glycerol-3-phosphate dehydrogenase (GPDH) activity in 3T3-L1 Adipocytes. The expression of the critical molecules involved in lipid synthesis such as PPARγ, C/EBPα and SREBP-1c was attenuated in EECF-treated cells. According to HPLC-DAD and HPLC-MS/MS analysis, rutin, kaempferol, betanin and another nine compounds were present in EECF. The suppression of lipid accumulation by rutin, kaempferol and betanin occurred by decreasing the gene expression of PPARγ, C/EBPα and SREBP-1c. Taken together, these findings suggest the presence of bioactive compounds in EECF may partly account for the anti-Adipogenesis of EECF and EECF is therefore a potentially lipid lowering functional food.
Dolichos lablab
Anti–Obesity activities of chikusetsusaponin IVa and Dolichos lablab L. seeds
Obesity, a condition where excess body fat accumulates to the extent, causes a negative effect on health. Previously, we reported the extract of Dolichos lablab L. (DLL-Ex) Inhibited high-fat diet (HFD)-induced increases in body weight and body fat Mass and ameliorated increases in body weight. In the present work, we studyed the molecular mechanism for the Inhibitory effect of DLL-Ex or Chikusetsusaponin IVa (CS-IVa), as isolated from Dolichos lablab L. (DLL) seeds extract, on Adipocyte Differentiation . We evaluated the effect of DLL-Ex, an Anti-Obesity agent, and CS-IVa, an active component of DLL-Ex, on 3T3-L1 cell Differentiation via Oil red O assay and Q-PCR, along with their effects on CCAAT element binding protein alpha (C/EBPα ), peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), and fatty acid-binding protein 4 (FABP4) mRNA transcriptions. FAS and FABP4 protein expression levels after exposure to CS-IVa were also tested. The results showed that DLL-Ex and CS-IVa have potent Inhibitory activity on Adipocyte Differentiation. Therefore, DLL and CS-IVa may be developed as a functional food material to treat Obesity.
Ecklonia Cava
•The Ecklonia cava extract tested herein evidenced profound Adipogenesis Inhibition.
•The three Polyphenol compounds of phlorotannins were isolated from E. cava.
•Dieckol exhibited greatest potential Adipogenesis Inhibition.
•Dieckol Inhibits Adipogenesis by activating the AMPK pathway.
In this study, we assessed the potential Inhibitory effect of 5 species of brown seaweeds on Adipogenesis the Differentiation of 3T3-L1 preadipocytes into mature Adipocytes by measuring Oil-Red O staining. The Ecklonia cava extract tested herein evidenced profound Adipogenesis Inhibitory effect, compared to that exhibited by the other four brown seaweed extracts. Thus, E. cava was selected for isolation of active compounds and finally the three Polyphenol compounds of phlorotannins were obtained and their Inhibitory effect on Adipogenesis was observed. Among the phlorotannins, dieckol exhibited greatest potential Adipogenesis Inhibition and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding proteins (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1) and fatty acid binding protein 4 (FABP4) in a dose-dependent manner.
The specific mechanism mediating the effects of dieckol was confirmed by AMP-activated protein kinase (AMPK) activation. These results demonstrate Inhibitory effect of dieckol compound on Adipogenesis through the activation of the AMPK signal pathway.
Anti-Adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 Adipocytes
In this study, we examined the Inhibitory effects of enzyme- treated Ecklonia cava (EEc) extract on the Adipogenesis of 3T3-L1 Adipocytes. The components of Ecklonia cava (E. cava) were first separated and purified using the digestive enzymes pectinase (Rapidase® X‑Press L) and cellulase (Rohament® CL). We found that the EEc extract contained three distinct phlorotannins: eckol, dieckol and phlorofucofuroeckol-A. Among the phlorotannins, dieckol was the most abundant in the EEc extract at 16 mg/g. Then we examined the Inhibitory effects of EEc extract treatment on Differentiation‑related transcription factors and on Adipogenesis‑related gene expression in vitro using 3T3-L1 Adipocytes. 3T3‑L1 pre‑Adipocytes were used to determine the concentrations of the EEc extract and Garcinia cambogia (Gar) extract that did not result in cytotoxicity. Glucose utilization and triglyceride (TG) accumulation in the EEc‑treated Adipocytes were similarly Inhibited by 50 µg/ml EEc and 200 µg/ml Gar, and these results were confirmed by Oil Red O staining.
Protein expression of Adipogenesis Differentiation‑related transcription factors following treatment with the EEc extract was also examined. Only the expression of CCAAT/enhancer‑binding protein (C/EBP)α was decreased, while there was no effect on the expression of C/EBPβ, C/EBPδ, and peroxisome proliferator‑activated receptor γ (PPARγ). Treatment with the EEc extract decreased the expression levels of Adipogenesis‑related genes, in particular sterol regulatory element binding protein‑1c (SREBP‑1c), Adipocyte fatty acid binding protein (A‑FABP), fatty acid synthase (FAS) and adiponectin. These results suggest that EEc extract treatment has an Inhibitory effect on Adipogenesis, specifically by affecting the activation of the C/EBPα signaling pathway and the resulting Adipogenesis-related gene expression.
Ecliptal (Eclipta alba)
A swift increase has been observed in the number of individuals with metabolic syndrome worldwide. A number of natural compounds have been identified towards combating metabolic syndrome. Adding to this premise, here we report the pleiotropic activities of Ecliptal (EC); a natural compound isolated from the herb Eclipta alba. Administration of EC was shown to have prominent anti-adipogenic effects in 3T3-L1 and hMSC derived adipocytes. It was shown to activate Wnt-pathway and alter AKT signaling. Additionally, it caused cell cycle arrest and inhibited mitotic clonal expansion. EC treatment augmented mitochondrial biogenesis as well as function as estimated by expression of PGC1α, UCP-1, mitochondrial complexes and estimation of oxygen consumption rate. EC also reduced LPS-induced inflammation and tunicamycin induced ER stress.
Further, EC enhanced insulin sensitivity by increasing AKT phosphorylation, inhibiting PKCα/βII phosphorylation and reducing leptin/adiponectin ratio. Finally, EC administration in Syrian golden hamsters was shown to have potent anti-dyslipidemic effects. Cumulatively, encompassing pleiotropic activities of EC, it could prove to be a potential drug candidate against obesity, insulin resistance and related metabolic syndrome.
Ethyl acetate fraction of Eclipta alba: a potential phytopharmaceutical targeting Adipocyte Differentiation
Egcg
(-)Epigallocatechin gallate (EGCG) is the most abundant catechin in green tea and reportedly has anti-obesity and anti-adipogenic effects. In this study, we determined that the up-regulation of the WNT/β-catenin pathway is the anti-adipogenic mechanisms of EGCG in 3T3-L1 cells. EGCG treatment down-regulates the expression of major genes involved in the adipogenesis pathway including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer binding protein (C/EBP)α, fatty acid binding protein (FABP)4 and fatty acid synthase (FASN), while up-regulating the nuclear level of β-catenin. Knockdown of β-catenin using small interfering (si) RNA attenuated the inhibitory effects of EGCG on intracellular lipid accumulation. β-catenin siRNA transfection also recovered terminal adipocyte markers such as FABP4, FASN, lipoprotein lipase and adiponectin, which were down-regulated by EGCG. The DNA binding activities as well as the expression levels of PPARγ and C/EBPα, which were down-regulated by EGCG, were significantly restored by β-catenin siRNA transfection. In addition, we found that EGCG efficiently up-regulates the WNT/β-catenin pathway. Among the members of the WNT/β-catenin pathway, the expressions of low density lipoprotein receptor-related protein (LRP)5, LRP6, disheveled (DVL)2 and DVL3 were significantly up-regulated, while AXIN expression was down-regulated by EGCG, and the phosphorylation of glycogen synthase kinase 3β was increased. These results suggest that EGCG activates the WNT/β-catenin pathway, resulting in the up-regulation of β-catenin, which down-regulates the major genes of the adipogenesis pathway. Taken together, our findings clearly show that the anti-adipogenic effects of EGCG are, at least partially, dependent on the WNT/β-catenin pathway.
Genistein, EGCG, and capsaicin Inhibit Adipocyte Differentiation process via activating AMP-activated protein kinase
Phytochemicals such as soy isoflavone genistein have been reported to possess therapeutic effects for obesity, diabetes, and cardiovascular diseases. In the present study, the molecular basis of selective phytochemicals with emphasis on their ability to control intracellular signaling cascades of AMP-activated kinase (AMPK) responsible for the inhibition of adipogenesis was investigated. Recently, the evolutionarily conserved serine/threonine kinase, AMPK, emerges as a possible target molecule of anti-obesity. Hypothalamic AMPK was found to integrate nutritional and hormonal signals modulating feeding behavior and energy expenditure.
We have investigated the effects of genistein, EGCG, and capsaicin on adipocyte differentiation in relation to AMPK activation in 3T3-L1 cells. Genistein (20-200muM) significantly inhibited the process of adipocyte differentiation and led to apoptosis of mature adipocytes. Genistein, EGCG, and capsaicin stimulated the intracellular ROS release, which activated AMPK rapidly. We suggest that AMPK is a novel and critical component of both inhibition of adipocyte differentiation and apoptosis of mature adipocytes by genistein or EGCG or capsaicin further implying AMPK as a prime target of obesity control.
Anti–Obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to Adipogenesis and cell cycle arrest in 3T3-L1
Fatty acid synthase (FAS) has been recognized as a potential therapeutic target for Obesity. In this study, for the first time, the Inhibitory effect of pomegranate husk extract, punicalagin and ellagic acid on FAS was investigated. We found them potently Inhibiting the activity of FAS with half-Inhibitory concentration values (IC50) of 4.1 μg/ml (pomegranate husk extract), 4.2 μg/ml (4.50 μM, punicalagin) and 1.31 μg/ml (4.34 μM, ellagic acid), respectively. Moreover, they all exhibited time-dependent inactivation of FAS.
Punicalagin and ellagic acid Inhibited FAS with different mechanisms compared to previously reported Inhibitors, through inactivating acetyl/malonyl transferase and β-ketoacyl synthase domains, respectively. Additionally, 100 μg/ml pomegranate husk extract, 5.24 μg/ml (5 μM) punicalagin and 4.5 μg/ml (15 μM) ellagic acid effectively Reduced lipid accumulation inside FAS over-expressed 3T3-L1 Adipocytes. Since FAS plays a key role in the biosynthesis pathway of fatty acid, these findings suggest that pomegranate husk extract, punicalagin and ellagic acid have potential in the prevention and treatment of Obesity.
It has been reported that alkaloids derived from Coptis chinensis exert Anti-Adipogenic activity on 3T3-L1 Adipocytes by downregulating peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α). However, the signaling-based mechanism of the Inhibitory role of epiberberine in the early stages of 3T3-L1 Adipocyte Differentiation is uncharacterized. Here, we show that epiberberine had Inhibitory effects on Adipocyte Differentiation and significantly decreased lipid accumulation by downregulating an Adipocyte -specific transcription factor, sterol regulatory element-binding protein-1 (SREBP-1).
Furthermore, we observed that epiberberine markedly suppressed the Differentiation -mediated phosphorylation of components of both the Raf/mitogen-activated protein kinase 1 (MEK1)/extracellular signal-regulated protein kinase 1/2 (ERK1/2) and AMP-activated protein kinase-α1 (AMPKα)/Akt pathways. In addition, gene expression of fatty acid synthase (FAS) was significantly Inhibited by treatment with epiberberine during Adipogenesis . These results indicate that the Anti-Adipogenic mechanism of epiberberine is associated with Inhibition of phosphorylation of Raf/MEK1/ERK1/2 and AMPKα/Akt, followed by downregulation of the major transcription factors of Adipogenesis , such as PPAR-γ, C/EBP-α, and SREBP-1, and FAS. Taken together, this study suggests that the Anti-Adipogenic effect of epiberberine is mediated by downregulation of the Raf/MEK1/ERK1/2 and AMPKα/Akt pathways during 3T3-L1 Adipocyte Differentiation . Moreover, the Anti-Adipogenic effects of epiberberine were not accompanied by modulation of β-catenin.
Obesity is one of the major public health problems in the world because it is implicated in Metabolic Syndrome s, such as type 2 Diabetes , hypertension, and cardiovascular diseases. The objective of this study was to investigate whether Erigeron annuus (L.) Pers. (EAP) extract Suppresses reactive oxygen species (ROS) production and Fat Accumulation in 3T3-L1 cells by activating an AMP-dependent kinase (AMPK) signaling pathway. Our results showed that EAP water extract significantly Inhibits ROS production, Adipogenesis , and lipogenesis during Differentiation of 3T3-L1 preadipocytes . In addition, EAP decreased mRNA and protein levels of proliferator-activated receptor γ (PPARγ ) and CCAAT/enhancer-binding protein alpha (C/EBPα ). Moreover, EAP suppressed mRNA expressions of fatty acid synthase (FAS), lipoprotein lipase (LPL), Adipocyte protein 2 (aP2) in a dose-dependent manner. Whereas, EAP upregulated adiponectin expression, phosphorylation levels of AMPK and carnitine palmitoyltransferase 1 (CPT-1) protein level during Differentiation of 3T3-L1 preadipocytes.
These results suggest that EAP water extract can exert ROS-linked Anti-Obesity effect through the mechanism that might involve Inhibition of ROS production, Adipogenesis and lipogenesis via an activating AMPK signaling pathway.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 Adipocyte apoptosis and Adipogenesis .
Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled Adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation.
Results: In mature Adipocytes , esculetin caused a time‐ and dose‐related increase in Adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes , apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in Preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also Inhibited Adipogenesis of 3T3‐L1 preadipocytes . Esculetin‐mediated Inhibition of Adipocyte Differentiation occurred during the early, intermediate, and late stages of the Differentiation process. In addition, esculetin induced apoptosis during the late stage of Differentiation .
Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, Adipogenesis, and apoptosis in 3T3‐L1 cells.
Euphorbia lunulata
The insulin-like and/or insulin-sensitising effects of Syzygium aqueum leaf extract and its six bioactive compounds; 4-hydroxybenzaldehyde, myricetin-3-O-rhamnoside, europetin-3-O-rhamnoside, phloretin, myrigalone-G and myrigalone-B were investigated in 3T3-L1 Adipocytes. We observed that, S. aqueum leaf extract (0.04–5 μg/ml) and its six bioactive compounds (0.08–10 μM) at non-cytotoxic concentrations were effectively enhance Adipogenesis, stimulate glucose uptake and increase adiponectin secretion in 3T3-L1 Adipocytes. Clearly, the compounds myricetin-3-O-rhamnoside and europetin-3-O-rhamnoside showed insulin-like and insulin-sensitising effects on Adipocytes from a concentration of 0.08 μM.
These compounds were far better than rosiglitazone and the other isolated compounds in enhancing Adipogenesis, stimulating 2-NBDG uptake and increasing adiponectin secretion at all the concentrations tested. These suggest the AntiDiabetic potential of S. aqueum leaf extract and its six bioactive compounds. However, further molecular interaction studies to explain the mechanisms of action are highly warranted.
Evodiamine (Evodia rutaecarpa)
Evodiamine Inhibits Adipogenesis via the EGFR–PKCα–ERK signaling pathway
The molecular mechanism of the Anti-Adipogenic effect of evodiamine (which has several capsaicin-like pharmacological actions) was investigated. The evodiamine effect was not blocked by the specific TRPV1 antagonist capsazepine in 3T3-L1 preadipocytes , whereas its effect was greatly curtailed by Inhibitors of protein kinase C (PKC) and epidermal growth factor receptor (EGFR). Signal analyses showed that evodiamine stimulated the phosphorylation of EGFR, PKCα, and ERK, all of which were Reduced by an Inhibitors EGFR Inhibitor.
Silencing experiments of EGFR mRNA supported the involvement of these signaling molecules in the Inhibitory effect of evodiamine. An unidentified mechanism whereby evodiamine Inhibits Adipogenesis via the EGFR–PKCα–ERK signaling pathway was revealed.
Ferulic Acid (Ferula assafoetida L)
World epidemic Obesity is a major contributing factor to metabolic diseases including insulin resistance and cardiovascular diseases. In this study, aqueous and ethanolic extracts of hulled barley with roasting temperatures of up to 250 °C were investigated for their Anti-Adipogenic effects in vitro and in vivo. An aqueous extract of hulled barley roasted at 210 °C (AHB210) effectively Inhibited Adipocyte Differentiation. Intraperitoneal injections of 15 or 50 mg/kg AHB210 dose dependently prevented body Weight Gain, fat Mass increase, and dysregulated lipid profiles in high fat diet-induced obese male mice. In addition, oral administration of AHB210 to ovariectomized rats also prevented body Weight Gain.
A high performance liquid chromatographic analysis identified coumaric acid and ferulic acid as primary Anti-Obesity mediators. The presence of beta glucan in AHB210 was less likely to be responsible for the lipid accumulating actions. Taken together, AHB210 may be useful to Prevent Obesity and its related metabolic diseases.
Ficus deltoidea
Objective: This study examined the Anti-Adipogenic effects of extracts of Ficus deltoidea var. deltoidia and var. angustifolia, a natural slimming aid, on 3T3-L1 Adipocytes.
Methods: Methanol and water extracts of leaves of the F. deltoidea varieties were analyzed to determine their total flavonoid content (TFC) and total phenolic content (TPC), respectively. The study was initiated by determining the maximum non-toxic dose (MNTD) of the methanol and water extracts for 3T3-L1 preadipocytes. Possible Anti-Adipogenic effects were then examined by treating 2-d post confluent 3T3-L1 preadipocytes with either methanol extract or water extract at MNTD and half MNTD (½MNTD), after which the preadipocytces were induced to form mature Adipocytes. Visualisation and quantification of lipid content in mature Adipocytes were carried out through oil red O staining and measurement of optical density (OD) at 520 nm, respectively.
Results: The TFCs of the methanol extracts were 1.36 and 1.97 g quercetin equivalents (QE)/100 g dry weight (DW), while the TPCs of the water extracts were 5.61 and 2.73 g gallic acid equivalents (GAE)/100 g DW for var. deltoidea and var. angustilofia, respectively. The MNTDs determined for methanol and water extracts were (300.0±28.3) and (225.0±21.2) µg/ml, respectively, for var. deltoidea, while much lower MNTDs [(60.0±2.0) µg/ml for methanol extracts and (8.0±1.0) µg/ml for water extracts] were recorded for var. angustifolia. Studies revealed that the methanol extracts of both varieties and the water extracts of var. angustifolia at either MNTD or ½MNTD significantly Inhibited the maturation of preadipocytes.
Conclusions: The Inhibition of the formation of mature Adipocytes indicated that leaf extracts of F. deltoidea could have potential Anti-Obesity effects.
fisetin (Cotinus Coggygria)
Adipocytes are the key player in Adipose Tissue Inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and Differentiation of preadipocytes. Fistein, a Polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-Diabetic effects. In this study, we aimed to investigate the effect of fisetin on Adipocyte proliferation and Differentiation in 3T3-L1 Preadipocyte cell line and its mechanism of action. We found that fisetin Inhibits Adipocyte Differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature Adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ.
Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the Differentiation medium. We also found that fisetin Inhibition of Adipocyte Differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of Preadipocyte proliferation at early stage of Differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the Inhibition of Adipocyte Differentiation by fisetin may be at least in part mediated by cell cycle arrest during Adipogenesis.
Foenumoside B (Lysimachia foenum-graecum)
We have previously reported anti-obesity effects of Lysimachia foenum-graecum in high-fat diet (HFD)-induced obesity model. Here we isolated a triterpene saponin foenumoside B as an active component of L. foenum-graecum. Foenumoside B blocked the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner with an IC50 of 0.2 μg/ml in adipogenesis assay and suppressed the induction of PPARγ, the master regulator of adipogenesis. Foenumoside B induced the activation of AMP-activated protein kinase (AMPK), and modulated the expression of genes involved in lipid metabolism towards lipid breakdown in differentiated adipocytes. In mouse model, oral administration of foenumoside B (10mg/kg/day for 6 weeks) reduced HFD-induced body weight gain significantly without affecting food intake. Treatment of foenumoside B suppressed lipid accumulation in white adipose tissues and the liver, and lowered blood levels of glucose, triglycerides, ALT, and AST in HFD-induced obese mice.
Consistent with the in vitro results, foenumoside B activated AMPK signaling, suppressed the expression of lipogenic genes, and enhanced the expression of lipolytic genes in vivo. Foenumoside B also blocked HFD-induced proinflammatory cytokine production in adipose tissue, suggesting its protective role against insulin resistance. Taken together, these findings demonstrate that foenumoside B represents the anti-obesity effects of L. foenum-graecum, and suggest therapeutic potential of foenumoside B in obesity and obesity-related metabolic diseases.
Suppression of Adipocyte Differentiation by Foenumoside B from Lysimachia foenum–graecum Is Mediated by PPARγ Antagonism
Lysimachia foenum-graecum extract (LFE) and its active component foenumoside B (FSB) have been shown to inhibit adipocyte differentiation, but their mechanisms were poorly defined. Here, we investigated the molecular mechanisms responsible for their anti-adipogenic effects. Both LFE and FSB inhibited the differentiation of 3T3-L1 preadipocytes induced by peroxisome proliferator-activated receptor-γ (PPARγ) agonists, accompanied by reductions in the expressions of the lipogenic genes aP2, CD36, and FAS. Moreover, LFE and FSB inhibited PPARγ transactivation activity with IC50s of 22.5 μg/ml and 7.63 μg/ml, respectively, and showed selectivity against PPARα and PPARδ. Rosiglitazone-induced interaction between PPARγ ligand binding domain (LBD) and coactivator SRC-1 was blocked by LFE or FSB, whereas reduced NCoR-1 binding to PPARγ by rosiglitazone was reversed in the presence of LFE or FSB.
In vivo administration of LFE into either ob/ob mice or KKAy mice reduced body weights, and levels of PPARγ and C/EBPα in fat tissues. Furthermore, insulin resistance was ameliorated by LFE treatment, with reduced adipose tissue inflammation and hepatic steatosis. Thus, LFE and FSB were found to act as PPARγ antagonists that improve insulin sensitivity and metabolic profiles. We propose that LFE and its active component FSB offer a new therapeutic strategy for metabolic disorders including obesity and insulin resistance.
Balance between Adipocyte and osteoblast Differentiation is the key link of disease progression in Obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and Adipocytes prompted us to analyse the effect of FNT on Adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced Obesity. The Anti-Obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT Suppresses the Adipogenic Differentiation of 3T3-L1 fibroblasts, through down-regulation of key Adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and Inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of β-catenin were attributed to the Anti-Adipogenic action of FNT. In vivo, 12 weeks of FNT treatment Inhibited the development of Obesity in mice by attenuating HFD-induced body Weight Gain and visceral Fat Accumulation. The Anti-Obesity effect of FNT results from increased energy expenditure.
FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT’s rescuing action against Obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased Adipogenic potentials. Our findings suggest that FNT Inhibits Adipogenesis through AMPK/β-catenin signal transduction pathways and protects against HFD-induced Obesity and bone loss.
fucoxanthin
Fucoxanthin and its metabolite, fucoxanthinol, suppress Adipocyte Differentiation in 3T3-L1 cells
Fucoxanthin is a major carotenoid found in edible seaweed such as Undaria pinnatifida and Hijikia fusiformis. We investigated the suppressive effects of fucoxanthin and its metabolite, fucoxanthinol, on the differentiation of 3T3-L1 preadipocytes to adipocytes. Fucoxanthin inhibited intercellular lipid accumulation during adipocyte differentiation of 3T3-L1 cells. Furthermore, fucoxanthin was converted to fucoxanthinol in 3T3-L1 cells. Fucoxanthinol also exhibited suppressive effects on lipid accumulation and decreased glycerol-3-phosphate dehydrogenase activity, an indicator of adipocyte differentiation.
The suppressive effect of fucoxanthinol was stronger than that of fucoxanthin. In addition, in 3T3-L1 cells treated with fucoxanthin and fucoxanthinol, peroxisome proliferator-activated receptor gamma (PPARgamma), which regulates adipogenic gene expression, was down-regulated in a dose-dependent manner. These results suggest that fucoxanthin and fucoxanthinol inhibit the adipocyte differentiation of 3T3-L1 cells through down-regulation of PPARgamma. Fucoxanthinol had stronger suppressive effects than fucoxanthin on adipocyte differentiation in 3T3-L1 cells.
Fucoxanthin and its deacetylated metabolite fucoxanthinol are two major carotenoids that have been confirmed to possess various pharmacological properties. In the present study, fucoxanthinol was identified as the deacetylated metabolite of fucoxanthin, after intravenous (i.v.) and intragastric gavage (i.g.) administration to rats at doses of 2 and 65 mg/kg, respectively, by liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Next, an accurate and precise LC-MS/MS method was developed to quantitatively determine fucoxanthin and fucoxanthinol in rat plasma.
Plasma samples were resolved by LC-MS/MS on a reverse-phase SB-C18 column that was equilibrated and eluted with acetonitrile (A)/aqueous 0.1% formic acid (B; 92/8, v/v) at a flow rate of 0.5 mL/min. Analytes were monitored by multiple-reaction monitoring (MRM) under positive electrospray ionization mode. The precursor/product transitions (m/z) were 659.3→109.0 for fucoxanthin, 617.2→109.0 for fucoxanthinol, and 429.4→313.2 for the internal standard (IS). Calibration curves for fucoxanthin and fucoxanthinol were linear over concentrations ranging from 1.53 to 720 and 1.17 to 600 ng/mL, respectively. The inter- and intraday accuracy and precision were within ±15%. The method was applied successfully in a pharmacokinetic study and the resulting oral fucoxanthin bioavailability calculated.
Gallotannin (Mangifera indica)
Expansion of adipose tissue in obesity is associated with dysregulation of adipokines, which can lead to long-term metabolic disorders. Gallotannin derivatives from mango possess anti-inflammatory activities, but their potential role in lipid metabolism is not well investigated. In this study, 3T3-L1 preadipocytes were differentiated into adipocytes and treated with mango polyphenols (MG), or pyrogallol (PG) for 6 days. The anti-adipogenic activity of PG was demonstrated by reduced number of lipid droplets and expressions of adipogenic markers, such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα).
In mature adipocytes, PG promoted adipocyte browning and increased the expressions of uncoupling protein 1 (UCP1) and sirtuin 1 (Sirt1). Knockdown of AMP-activated protein kinase (AMPK) α1 with siRNA partially abolished the effect of PG on adipogenesis. Results indicate that gallotannin derivatives modulate lipid metabolism, at least in part, though the AMPK pathway, and possess potential to prevent obesity-related conditions.
Mango supplementation improved the plasma levels of proinflammatory cytokines and metabolic hormones in obese participants partly due to increased systemic exposure to polyphenolic metabolites. In summary, health benefits of mango-derived polyphenols in obesity and insulin resistance are mainly attributed to the production of microbial metabolites of GT, which is in part through the interactions with the AMPK-C/EBPα/PPARγ and AMPKUCP1/Sirt1 axes in adipose tissue. Improving the abundance of probiotics in gut microbiota may improve the bioavailability of mango-derived polyphenols, resulting in enhanced efficacy of the microbial metabolites in the prevention of lipid accumulation and metabolic dysfunction in obesity.
Four new lanostane triterpenes, butyl ganoderate A, butyl ganoderate B, butyl lucidenate N, and butyl lucidenate A, were isolated from the fruiting bodies of Ganoderma lucidum together with 14 known compounds. The structures of the new triterpenes were established by extensive spectroscopic studies and chemical evidence. In addition, the Inhibitory effect of isolated compounds on Adipocyte Differentiation in 3T3-L1 cells was examined.
Gelidium elegans
Previously, we showed that Gelidium elegans extract (GE) Suppresses oxidative stress and lipid accumulation. However, the molecular mechanism underlying the Anti-Adipogenic ability of GE is still unclear. The levels of Adipogenesis markers and triglyceride synthesis enzymes were measured by western blot. To evaluate the lipid accumulation in 3T3-L1 cells, oil red o staining was performed. We investigated whether GE induces Lipolysis by measuring Adipocyte triglyceride lipase (ATGL) during Adipocyte Differentiation. We also examined the expression of beige cell-associated genes and the production of carbon dioxide in 3T3-L1 cells. We showed that GE increased the protein expression of CAAT/enhancer binding protein (C/EBP) homologous protein 10 and Inhibited the expression of C/EBPβ. GE discouraged triglyceride synthesis via deregulation of lysophosphatidic acid acyltransferase-θ (LPAATθ) and diacylglycerolacyltransferase 1 (DGAT1) during late-stage Adipogenesis in 3T3-L1 cells. GE also dramatically increased ATGL in 3T3-L1 cells.
Finally, in 3T3-L1 cells treated with GE, markers of beige Adipocytes such as PRDM16 and UCP1 were upregulated, and large amounts of carbon dioxide were produced. These data indicate that GE Suppresses Adipogenesis by stimulating a beige-like phenotype in 3T3-L1 cells.
Genistein
genistein’s Anti-Adipogenic effect coincides with the expression of C\EBPβ, C\EBPα and PPARγ , we hypothesized that genistein Inhibits 3T3-L1 cell …
Microarrays showed that anti‐Adipogenic effects of genistein were principally attributable to activation of Wnt signalling via ERs‐dependent pathway, such as Erk/JNK signalling and LEF/TCF4 co … Unlike genistein, daidzein Inhibited Adipogenesis through stimulation of …
The AntiAdipogenic effect of genistein was not due to Inhibition of insulin receptor subtrate-1 …Genistein (4′,5,7-trihydroxyisoflavone) and all tissue culture materials were from GIBCO … Rabbit polyclonal anti-signal transducers and activators of transcription (STAT) 3 antibody was …
Compounds genistein (G), quercetin (Q), and resveratrol (R) have been reported to each exhibit Anti-Adipogenic activities in Adipocytes and antiproliferative and pro-apoptotic activities in several cell types. We studied the combined effects of G, Q, and R on Adipogenesis.
At d 3 of Adipogenesis , TGFβ1 was strongly up-regulated by genistein in an ER-dependent manner …Adipogenic Differentiation and maturation, on the other hand, were Reduced by genistein (and 17β-estradiol) via an ER-dependent mechanism involving autocrine or …
Gentiopicroside (Gentiana scabra)
Ginkgetin (Ginkgo biloba)
Adipogenesis involved in hypertrophy and hyperplasia of Adipocytes is responsible for expanding the Mass of Adipose Tissue s in obese individuals. Peroxisome proliferator-activated receptor γ (PPARγ ) and CCAAT/enhancer-binding protein α(C/EBPα ) are two principal transcription factors induced by delicate signaling pathways, including signal transducer and activator of transcription 5 (STAT5), in Adipogenesis. Here, we demonstrated a novel role of ginkgetin, a biflavone from Ginkgo biloba leaves, as a STAT5 Inhibit or that blocks the Differentiation of preadipocytes into Adipocytes. During the Differentiation of 3T3-L1 cells, ginkgetin treatment during the first 2 days markedly Inhibited the formation of lipid-bearing Adipocytes. PPARγ and C/EBPα expression was decreased in 3T3-L1 cells during Adipogenesis following ginkgetin treatment, whereas no change was observed in C/EBPβ or C/EBPδ expression. Inhibition of PPARγ and C/EBPα expression by ginkgetin occurred through the prevention of STAT5 activation during the initiation phase of Adipogenesis.
In addition, ginkgetin-mediated the Inhibition of Adipogenesis was recapitulated in the Differentiation of primary preadipocytes. Lastly, we confirmed the Inhibitory effects of ginkgetin on the hypertrophy of white Adipose Tissues from high-fat diet-fed mice. These results indicate that ginkgetin is a potential anti-Adipogenesis and Anti-Obesity drug.
Ginkgetin: A natural biflavone with versatile pharmacological activities
Natural products, being richly endowed with curative powers, have become spotlight for biomedical and pharmaceutical research to develop novel therapeutics during recent years. Ginkgetin, a natural non-toxic biflavone, has been shown to exhibit anti-cancer, anti-inflammatory, anti-microbial, Anti-Adipogenic , and neuroprotective activities. Ginkgetin combats cancer progression by arresting cell cycle, inducing apoptosis, stimulating autophagy, and targeting many deregulated signaling pathways such as JAK/STAT and MAPKs. Ginkgetin halts Inflammation mediators like interleukins, iNOS, COX-2, PGE2, NF-κB, and acts as an Inhibit or of PLA2. GK shows strong neuroprotection against oxidative stress-promoted cell death, Inhibits cerebral micro-hemorrhage, decreases neurologic deficits, and halts apoptosis of neurons.
In conclusion, isoginkgetin is a promising candidate compound for the treatment of insulin resistance based on our in vitro studies. Further in vivo studies are warranted. Analogs of isoginkgetin possessing higher potency in adiponectin production and lower PPARγ agonist activity can also be explored to identify more active compounds in vivo. Currently, insulin-sensitizing drugs mainly include PPARγ agonists and compounds that target the insulin signaling pathway. This study presents for the first time a potential new strategy for the discovery of insulin sensitizers by screening adiponectin production. Moreover, the critical genes involved in isoginkgetin action may provide novel targets for anti-Diabetic therapy.
GbE may have a potentially therapeutic use for menopause-associated Obesity; supplementation with 500 mg/kg of GbE stimulated hypothalamic serotonergic activity in ovariectomized rats (28). GbE isolated bioactive compounds have been demonstrated to stimulate Lipolysis in 3T3-L1 Adipocytes (29), and to Inhibit Adipogenesis through activation of the AMPK pathway (30). However, the effects of GbE supplementation on metabolic processes of visceral Adipose Tissue in DIO rats remain largely unknown. In view of the considerations highlighted above, the aim of the present study was to investigate the effects of GbE supplementation as a potentially anti-obesogenic effector for improvement in lipid metabolism of epididymal Adipose Tissue of DIO rats.
Ginkgo Biloba
Adipogenesis involved in hypertrophy and hyperplasia of Adipocytes is responsible for expanding the Mass of Adipose Tissue s in obese individuals. Peroxisome proliferator-activated receptor γ (PPARγ ) and CCAAT/enhancer-binding protein α (C/EBPα ) are two principal transcription factors induced by delicate signaling pathways, including signal transducer and activator of transcription 5 (STAT5), in Adipogenesis. Here, we demonstrated a novel role of ginkgetin, a biflavone from Ginkgo biloba leaves, as a STAT5 Inhibit or that blocks the Differentiation of preadipocytes into Adipocytes.
During the Differentiation of 3T3-L1 cells, ginkgetin treatment during the first 2 days markedly Inhibited the formation of lipid-bearing Adipocytes . PPARγ and C/EBPα expression was decreased in 3T3-L1 cells during Adipogenesis following ginkgetin treatment, whereas no change was observed in C/EBPβ or C/EBPδ expression. Inhibition of PPARγ and C/EBPα expression by ginkgetin occurred through the prevention of STAT5 activation during the initiation phase of Adipogenesis. In addition, ginkgetin-mediated the Inhibition of Adipogenesis was recapitulated in the Differentiation of primary preadipocytes. Lastly, we confirmed the Inhibitory effects of ginkgetin on the hypertrophy of white Adipose Tissues from high-fat diet-fed mice. These results indicate that ginkgetin is a potential anti-Adipogenesis and Anti-Obesity drug.
Ginsenoside Rg1, Rg2, Rg3
Rg1 exhibits an Anti-Adipogenic effect via regulation of the expression of the transcriptional factors and lipid metabolism-related genes in vivo and in vitro. We observed that Rg1 administration significantly increased the phosphorylation level of AMP-activated protein kinase (AMPK) in both epididymal white Adipose Tissue and 3T3-L1 cells. These results indicated that Rg1 works both in an Anti-Adipogenic and Anti-Obesity manner through inducing AMPK activation, Inhibiting lipogenesis, and decreasing intracellular lipid content, Adipocyte size, and adipose weight.
Anti–Adipogenic effects and mechanisms of ginsenoside Rg3 in Pre-Adipocytes and obese mice
Red or black ginseng has been reported more powerful than white/fresh ginseng in dealing with various diseases/conditions including Obesity. The major reason is that heating/steaming, the process of making red or black ginseng, produces large amount of bioactive compounds including ginsenoside Rg3 (Rg3), which are trace in fresh or white ginseng. In the present study, Rg3 was applied both in Pre-Adipocytes and obese mice to investigate the Anti-Adipogenic effects and relevant mechanisms. Our results show that Rg3 dose-dependently Inhibited cell Differentiation both in 3T3-L1 cells (30, 50, and 100 μM) and human primary Pre-Adipocytes (10, 20, and 30 μM).
This Inhibitory effect is accompanied by the attenuation of the expressions of Adipogenic markers including peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein alpha (C/EBP-α), fatty acid synthase (FAS), fatty acid binding protein 4 (FABP4) and perilipin. Although dietary intake of Rg3 (0.1 mg Rg3/kg diet, 8 weeks) did not significantly affect body Weight Gain , fat pads and food intake as well as of PPAR-γ expression in fat tissues, we found that hepatic PPAR-γ and C/EBP-α protein expressions and hepatic glutathione reductase and glutathione S-transferase, two major Antioxidants molecules were significantly Reduced by Rg3. These results suggest that ginsenoside Rg3 may be a potential agent in reducing/preventing Obesity.
AntiObesity effect of ginsenoside Rg3 involves the AMPK and PPAR‐γ signal pathways
Ginsenosides, the active component of ginseng, exerts AntiDiabetic and anticancer effects. This study investigated the molecular basis of ginsenoside Rg3, a red ginseng rich constituent, focusing on its ability to Inhibit Adipocyte Differentiation in 3T3‐L1 cells. The data show that ginsenoside Rg3 was effective in the Inhibition of Adipocyte Differentiation.
This Inhibitory effect of ginsenoside Rg3 on Adipocyte Differentiation was accompanied by PPAR‐γ Inhibition in rosiglitazone‐treated cells. The study also tested whether AMP‐activated protein kinase (AMPK) activation was involved in the Inhibitory effects of ginsenoside Rg3. AMPK plays a role in maintaining health in the context of diseases such as type 2 Diabetes, Obesity and cancer. AMPK was reported to control nutritional and hormonal signal modulating. Rg3 significantly and time‐dependently activated AMPK. Taken together, these results suggest that the AntiObesity effect of red ginseng rich constituent, ginsenoside Rg3, involves the AMPK signaling pathway and PPAR‐γ Inhibition.
Ginsenoside Rg3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARγ
The LC50 value of Rg3 in 3T3-L1 cell lipogenesis is 200 μM, and our working concentrations (5, 25 and 50 μM) of Rg3 Reduced lipogenesis without cell toxicity (Fig. 1B and C). To investigate the Inhibiting effect on lipid accumulation by Rg3, we treated 3T3-L1 cells for 3 or 9 days. Oil Red O staining confirmed lipid accumulation in the cell. At 3 days, the lipogenic cocktail MDI (insulin, dexamethasone and isobutylmethylxanthine) induced in Pre-Adipocytes a very low increase in their accumulated fat deposits. When Rg3 was combined with MDI-induced cells, their lipid accumulation was suppressed (Fig. 1D), in an Rg3 dose-dependent manner, as assessed at 9 days after treatment using Oil Red O staining microscopy data and Oil Red O absorbance at 520 nm (Fig. 1E). In Adipocytes, lipid accumulation is related to the amount of TGs in the cell. Similar to the Oil Red O staining results, TG storage was Reduced by Rg3 treatment in 3T3-L1 cells in a dose-dependent manner (Fig. 1F). These data suggest that Rg3 can Prevent lipogenesis and lipid accumulation in the 3T3-L1 cell line.
Ginsenoside Rg3 induces browning of 3T3-L1 Adipocytes by activating AMPK signaling
Rg3 induced the expression of beige fat-specific genes (CD137 and TMEM26) and lipid metabolism-associated genes (FASN, SREBP1, and MCAD), which indicated the activation of lipid metabolism by Rg3. We also demonstrated that activation of 5’ adenosine monophosphate-activated protein kinase (AMPK) is required for Rg3-mediated up-regulation of browning gene expression. Moreover, Rg3 Inhibited the accumulation of lipid droplets and Reduced the droplet size in mature 3T3-L1 Adipocytes.
Taken together, this study identifies a novel role of Rg3 in browning of white Adipocytes, as well as suggesting a potential mechanism of an Anti-Obesity effect of Panax ginseng.
Glehnia littoralis Root
Guarana (Paullinia cupana) is a plant originated in Brazil that presents a beneficial effect on body weight control and metabolic alterations. The aim of this study was to evaluate the effects of guarana on genes and miRNAs related to Adipogenesis in 3T3L1 cells. The Anti-Adipogenic effect of guarana was evaluated by Oil Red-O staining. Gene and miRNA expression levels were determined by real time PCR. The Cebpα and β-catenin nuclear translocation were evaluated using immunocytochemistry. Our data indicated that the triglyceride-reducing effect of guarana was dose-dependent from 100 to 300 µg/mL (−12%, −20%, −24% and −40%, respectively, p < 0.0001). An up-regulation of the Anti-Adipogenic genes Wnt10b, Wnt3a, Wnt1, Gata3 and Dlk1 and a down-regulation of Pro-Adipogenic genes Cebpα, PPARγ and Creb1 were also observed. Furthermore, guarana repressed mmu-miR-27b-3p, mmu-miR-34b-5p and mmu-miR-760-5p, that contributed for up-regulation of their molecular targets Wnt3a, Wnt1 and Wnt10b.
Results: In mature Adipocytes cis‐GS decreased viability, whereas the trans‐GS isomer had little effect. Both isomers caused dose‐dependent increases in apoptosis and cis‐GS was more effective than trans‐GS in inducing apoptosis. cis‐ and trans‐GS also increased caspase‐3 activity and release of cytochrome c from mitochondria. In maturing preadipocytes , both isomers were equally effective in reducing lipid content. The Adipocyte ‐specific transcription factors PPARγ 2, C/EBPα , and C/EBPβ were downregulated after treatment with cis‐GS during the maturation period. Furthermore, cis‐GS increased basal Lipolysis of mature Adipocytes , but trans‐GS had no effect.
Discussion: These results indicate that GS isomers may exert AntiObesity effects by Inhibiting Differentiation of preadipocytes , and by inducing apoptosis and promoting Lipolysis of mature Adipocytes . The cis‐GS isomer was more potent than the trans‐GS isomer in inducing apoptosis and Lipolysis in mature Adipocytes.
PME supplementation significantly up-regulated the PPARα, CPT1, CPT2, UCP1 and HSL mRNA levels compared with the HFD group, whereas it down-regulated expression of the PPARγ and DGAT2 genes. Finally, HFD increased serum leptin, insulin, glucose and insulin and glucose levels; however, PME reversed these changes. These results demonstrated that PME might relieve Obesity that occurs via Inhibition of Adipogenesis and lipogenesis as well as through Lipolysis and fatty acid oxidation in 3T3-L1 cells and HFD-induced obese mice.
We explored the potential of hesperidin and capsaicin, separately and in combination, to induce white Adipose Tissue (WAT) browning and to help body weight management in Western diet-fed rats. Adult male Wistar rats were fed for 8 weeks with Western diet and treated daily with hesperidin (100 mg/kg/day), capsaicin (4 mg/kg/day), hesperidin (100 mg/kg/day) + capsaicin (4 mg/kg/day), or the vehicle. Hesperidin and capsaicin separately, but not (or to a lesser extent) the combination, resulted in a decreased size of Adipocytes and induced emergence of multilocular brown-like Adipocytes positive for UCP1 and CIDEA in retroperitoneal WAT.
Expression levels of browning markers, such as Prdm16, in inguinal WAT also increased with capsaicin treatment compared with the vehicle (145% ± 17% vs 92% ± 21%, P < 0.05), but no significant effects were found with the combination (106% ± 12%). Thus, the combination of both bioactives Reduces the effectiveness of each compound to decrease the Adipocyte size and induce WAT browning.
Hibiscus rosa sinensis flower
AMPK activating and anti Adipogenic potential of Hibiscus rosa sinensis flower in 3T3-L1 cells
Results: Treatment with HRF 25 and 50 µg/mL activated AMP-activated protein kinase (AMPK) and was found to alleviate triglyceride accumulation significantly (p < 0.001) by 1.6 and 2.3 times respectively in pre adipocytes during differentiation. HRF 25 and 50 µg/mL also nonsignificantly reduced lipolysis which releases free fatty acids, a major contributing factor for insulin resistance. Activation of AMPK by phosphorylation has led to reduced gene and protein expression of adipogenic factors Peroxisome proliferator- activated receptor gamma (PPAR-γ), CCAT/enhancer binding protein alpha (C/EBPα), Sterol regulatory element- binding protein-1c (SREBP-1c) and their targets Fatty acid binding protein 4 (FABP4), Fatty acid synthase (FAS), Perilipin and enhanced Adiponectin expression. Treatment with HRF 25 and 50 µg/mL also resulted in inactivation of Acetyl-CoA carboxylase (ACC) by enhancing ACC phosphorylation, which reduced the levels of malonyl-CoA an allosteric inhibitor of carnitine palmitoyl transferase 1 (CPT1). Enhanced CPT1 levels causes induction of fatty acid β- oxidation. Effects of HRF were nullified in the presence of AMPK antagonist dorsomorphin.
Conclusion: In summary, HRF treatments reduced adipogenesis, enhanced factors regulating fatty acid oxidation and this is mediated by AMPK activation. The results conclusively showed anti-obesity potential of HRF and it might be helpful in treatment of associated complications.
Objectives: This study was designed to investigate the effect of hibiscus (Hibiscus sabdariffa) on adipogenic differentiation of 3T3-L1 cells at the cellular and molecular levels.
Design: Various concentrations of hibiscus extract were added to confluent 3T3-L1 preadipocytes at the outset of the differentiation program and further incubated for 36 hours. Cells were maintained in postdifferentiation medium containing insulin with hibiscus extract in complete culture medium.
Results: Hibiscus extract inhibited the adipocyte differentiation of 3T3-L1 preadipocytes induced by insulin, dexamethasone, and isobutylmethylxanthine (IBMX) in a dose-dependent manner. Hibiscus blocked the cytoplasmic lipid accumulation when administered at the onset of differentiation and 4 days after induction of differentiation. The inhibitory effect of hibiscus on adipogenic lipid accumulation of preadipocytes was significant (p < 0.01) between control cells and cells treated with hibiscus. Hibiscus extract significantly attenuated the expression of key adipogenic transcription factors, including CCAAT element binding protein (C/EBP)alpha and peroxisome proliferator-activated receptor (PPAR)gamma at protein levels.
Conclusion: These results suggest that hibiscus extract blocks adipogenesis, in part, by its suppression on the expression of adipogenic transcription factors, including C/EBPalpha and PPARgamma.
Hibiscus sabdariffa L
Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on Obesity
This review has gathered reports on the various anti-obesity effects of H. sabdariffa bioactive compounds in cell and animal models, as well as in humans. Available toxicology information on the consumption of H. sabdariffa revealed that its toxicity is dose-dependent and may cause an adverse effect when administered over a long period of time. Reports have shown that H. sabdariffa derived